Development of prototype for commercial vehicle blind spot detection and hazard warning equipment (Q3958191)
Jump to navigation
Jump to search
Project Q3958191 in Hungary
Language | Label | Description | Also known as |
---|---|---|---|
English | Development of prototype for commercial vehicle blind spot detection and hazard warning equipment |
Project Q3958191 in Hungary |
Statements
134,438,800 forint
0 references
823,984.541 Euro
0.0027336256 Euro
15 December 2021
0 references
301,425,528.576 forint
0 references
44.600617 percent
0 references
10 April 2018
0 references
31 December 2019
0 references
GUZMY CENTRAL EU Korlátolt Felelősségű Társaság
0 references
A.) Évtizedekkel korábban az első, a gépkocsivezető munkáját támogató asszisztens a személyautóknál a vákuumos fékrásegítő volt, a haszonjárműveknél pedig az sűrített levegővel működtetett fékrendszer. A cél azóta is változatlan maradt, a környezet, vezető, gépkocsi láncolat leggyengébb elemének a gépkocsi-vezető tevékenységének támogatása. Az első asszisztensek még mechanikus egységek voltak, a mostaniak már nem nélkülözik az elektronikát. A menetdinamikai szabályozó rendszerek, az ABS/ASR, az ESP, a fékasszisztens segítenek a vezetőnek a kritikus menethelyzetekben és ezzel növelik az aktív biztonságot, csökkentik a gépkocsivezető terhelését, növelik a menetkomfortot és a biztonságot, a légzsákok és az övfeszítők az ütközést, vagy a felborulást követően nyújtanak védelmet és ezzel hatékonyan javítják a gépkocsik passzív biztonságát. Minél gyorsabban felismerhető egy baleset, akár még közvetlenül a bekövetkezése előtt, annál hatékonyabb lehet a segítség. A tipikus embereri reakcióidő 1,0 s, amely a beavatkozás lehetőségeit erősen korlátozza, ebben a szegmensben kínálnak újabb lehetőségeket a különböző prediktív védelmi rendszerek, melyek a veszélyes helyzetekre reagálnak. Különböző érzékelőikkel kiterjesztik a gépkocsi érzékelési horizontját. Lehetőséget kínálnak még az ütközés bekövetkezte előtt a védelmi rendszer elemeinek működtetésére. Az elmúlt években több különböző elektronikus asszisztens rendszert fejlesztettek ki elsősorban a személygépkocsik részére, melyek többsége radar és video érzékelőkkel a gépkocsi közvetlen környezetét is érzékeli. A haszongépjárműszektorban ezek a fejlesztések nem vagy csak jelentős módosításokkal kerülnek felhasználásra. Jelen projekt célja olyan költséghatékony, járműtípustól függetlenül utólag beszerelhető, alacsony gyártási költségű/karbantartásigényű, üzembiztos holltérfigyelő és veszélyjelző (asszisztens) berendezés kifejlesztése, amely képes az álló/mozgó objektum teljes körű, hibamentes identifikálására kedvezőtlen időjárási körülmények között is. B.) Fentiekben bemutatott problémára, technológiai bizonytalanságra nyújt megoldást kifejleszteni kívánt prototípusunk. A projekt keretében a következő tevékenységeket tervezzük megvalósítani: 1. In-depth baleset elemzés. Ebben a munkaszakaszban in-depth módszerű, mély elemzéstvégzünk a nehéz tehergépjárművek, döntően többtagú nagyméretű járműegyüttesek és a védtelen közlekedési résztvevők (Vulnerable Road Users,továbbiakban VRU) részvételével történt közlekedési balesetekről min. n= 100 mintaszámmal. Ennek során többek között részletes adatgyűjtésre kerül sor a baleset helyének forgalmi rendjére és infrastrukturális kialakítására vonatkozóan (pl.: gyalogos, kerékpárút csatlakozása a tehergépkocsi haladási irányát tekintve) a tehergépjármű méreteire, haladási és kanyarodási helyigénye, vezetőfülke kialakítására (közvetlen és közvetett látótér precíz behatárolása), haladási pályaíve, sebességére vonatkozóan. Kiemelt vizsgálatra kerülnek a járművezető rekonstruált észlelési körülményei (szempillantás váltás és irányultság), valamint a VUR partner viselkedése. Tervezett időszükséglet: 4 hónap. 2. Technológiai elemzések. A témakörben végzett elemzések a kifejlesztendő holttér asszisztens berendezés funkcionális, műszaki igényspecifikáció és a különböző előírások/szabványok szerinti megfeleltethetőség szempontjából kerülnek elvégzésre. A funkcionális igényspecifikáció véglegesítése a piaci, partneri szempontok alapján történik, amely során meghatározásra kerül a projekt műszaki-pénzügyi keretrendszere, a felhasználók csoportjai,illetve azok igényei. A műszaki igények a technológia korlátai/lehetőségei, kapacitási/üzemeltetési összefüggései szerint kerülnek tisztázásra. A műszaki igényspecifikáció véglegesítése a környezeti paraméterek alapján fejeződik be. Az érvényes előírások/szabványok szerinti megfeleltethetőségnél a teljesítendő feladat az általános elektronikai, biztonságtechnikai előírások, valamint szakipari szabványok szerinti igényspecifikáció kidolgozása és pontosítása. E feladat végrehajtására 5 hónapot tervezünk. 3. Szenzorok és jelfeldogozóik pontos specifikálása és parametrizálása. Ebben a munkafázisban kerül sor a berendezés bemeneti adatait szolgáltató szenzor rendszer egyes elemeinek parametrizálására, amely a szenzorok számának és a jármű front- és oldalsó részén történő elhelyezése alapján behatárolja azok észlelési tartományát, különös tekintettel a mozgó és kanyarodó tehergépjármű és a mozgó vagy álló helyzetű VUR partnerek kölcsönös kapcsolatba kerülése vonatkozásában. A munkafolyamat során lehet elvégezni a különböző működési elvű, hatástartományú szenzorok (lidar lézer, mikrohullámú doppler radar, video jelek, ultrahangos távolságmérő) szűrési – és kiértékelési algoritmusainak kidolgozását. E feladat végrehajtására 5 hónapot tervezünk. 4. Vezérlő- és kiértékelő egység tervezése, kifejlesztése. Ebben a munkaszakaszban kerül sor az előző munkafázisok adatai és eredményei alapján a szenzorjeleket (Hungarian)
0 references
A.) Decades earlier, the first assistant to support the driver’s work was the vacuum brake assister in passenger cars and, in the case of commercial vehicles, the compressed air braking system. The goal has remained unchanged since then, supporting the activity of the driver as the weakest element of the environment, driver and car chain. The first assistants were still mechanical units, the current ones no longer lack electronics. Driving dynamic control systems, ABS/ASR, ESP, Brake Assist help the driver in critical driving situations and thereby increase active safety, reduce driver load, increase driving comfort and safety, airbags and belt tensioners provide protection after collision or rollover and thereby effectively improve the passive safety of cars. The faster an accident can be recognised, even immediately before it occurs, the more effective assistance can be. The typical human response time is 1.0 s, which severely limits the possibilities of intervention, in this segment new possibilities are offered by various predictive protection systems that respond to dangerous situations. They extend the vehicle’s detection horizon with their various sensors. They offer the possibility to operate the elements of the protection system before the collision occurs. Several different electronic assistant systems have been developed in recent years, mainly for cars, most of which detect the immediate surroundings of the car with radar and video sensors. In the commercial vehicle sector, these developments will not be used or will only be used with significant modifications. The objective of the present project is to develop a cost-effective, retrofitted, low-cost/maintenance-required, operational safe spot surveillance and hazard warning (assistant) equipment that can be used to identify the stationary/moving object fully and without fault in adverse weather conditions. B.) We want to develop a solution to the problem and technological uncertainty described above. Within the framework of the project, the following activities are planned: 1. In-depth accident analysis. In this phase we carry out in-depth analysis of traffic accidents involving heavy goods vehicles, predominantly multi-member large vehicle combinations and vulnerable road users (VRUs) with min. n=100 samples. This includes detailed data collection on traffic patterns and infrastructure at the location of the accident (e.g.: the connection of pedestrians and cycle paths with regard to the direction of travel of the truck) the dimensions of the lorry, the need for driving and cornering space, the design of the cab (precise delimitation of the direct and indirect field of vision), the trajectory and speed of the vehicle. The reconstructed detection conditions of the driver (eye-shifting and orientation) and the behaviour of the VUR partner will be examined in particular. Planned time requirement: Four months. 2. Technological analyses. The analysis carried out in this field will be carried out in terms of functional, technical demand specifications and compliance with different specifications/standards to be developed. The functional demand specification is finalised on the basis of market and partnership criteria, which determines the technical and financial framework of the project, the groups of users and their needs. Technical needs will be clarified according to the limitations/opportunities of the technology, capacity/operational context. The finalisation of the technical demand specification will be completed on the basis of environmental parameters. In the case of compliance with the applicable specifications/standards, the task to be carried out is to develop and clarify the specifications of general electronics, safety and technical standards. We plan 5 months to complete this task. 3. Precise specification and parametrisation of sensors and signal processors. In this working phase, certain elements of the sensor system providing the input data of the equipment are parametrised, which delimits their detection range based on the number of sensors and their positioning on the front and side of the vehicle, in particular in relation to the interaction between the moving and winding truck and the mobile or stationary VUR partners. During the workflow, the screening and evaluation algorithms of different operating principles and impact range sensors (lidar laser, microwave doppler radar, video signals, ultrasonic range meter) can be developed. We plan 5 months to complete this task. 4. Design and development of a control and evaluation unit. Sensor signals are carried out in this phase based on the data and results of previous work phases (English)
9 February 2022
0 references
Nagytarcsa, Pest
0 references
Identifiers
VEKOP-2.1.7-15-2016-00490
0 references