Q3748844 (Q3748844): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed an Item: Edited by the infer coords bot - inferring coordiantes from postal codes)
(‎Created claim: summary (P836): 4.1 Public summary of the project (objectives, measures, results)Finnish manufacturing industry is experiencing a vigorous transformation. The impact of the economic downturn and globalisation is reflected; work is transferred to countries with lower costs, closer to the customer’s own production or closer to the market. The impact on the subcontracting industry, product development and production processes is also significant. As the global eco...)
Property / summary
 
4.1 Public summary of the project (objectives, measures, results)Finnish manufacturing industry is experiencing a vigorous transformation. The impact of the economic downturn and globalisation is reflected; work is transferred to countries with lower costs, closer to the customer’s own production or closer to the market. The impact on the subcontracting industry, product development and production processes is also significant. As the global economic situation recovers, the industrial structure is projected to have changed permanently. In order to cope with the winds of change, industry needs to continuously develop its manufacturing processes and, in particular, be able to benefit from cost-effective and resource-saving methods offered by new production and material technologies. Resource efficiency has been put at the heart of, for example, the EU’s Europe 2020 strategy to create growth and jobs.The key objective of this investment project is to strengthen the opportunities for growth-oriented SMEs and research communities in the engineering industry to exploit new energy and resource efficient metal injection molding, Metal Injection Moulding (MIM), suitable for the manufacture of metallic parts. MIM technology has been developed especially for the manufacture of complex and highly mechanically high-strength pieces. This metallurgical process has the advantage of making complex copies without any post-processing operations such as machining. In practice, the MIM process, as an industrial process, is moderately complex, knowledge-intensive and requires knowledge from a wide range of technologies to ensure that a high-quality and dimensional product is created. A powder metallurgical process is an iterative manufacturing process in which in practice the manufacturing process, materials, shapes and dimensions of the product being manufactured must be refined through prototype manufacturing. Only after the iterative design and prototyping process can it be manufactured powder metallurgical parts as mass manufacture. The iteration process is carried out jointly by several actors. MIM technology is an environmentally friendly and low-carbon material-increasing manufacturing method, suitable for serial production of small pieces. At its best, 50 % material savings can be achieved in the process compared to traditional manufacturing techniques.The measures of the investment project will determine the heat treatment furnace suitable for MIM sintering with the companies and entities involved in the project and purchase a heat treatment furnace suitable for sintering metal parts with MIM technologies. The functionality of the heat treatment furnace will be tested together with the companies during the roll-up. In parallel with this investment project, a demonstration environment for new and challenging experiments with MIM technology- will be implemented. The investment in MIM technology will improve the ability to react faster to the technological development of mechanical engineering products, especially through material selection. Now and in the future, in the commercial development of equipment designs, it is necessary to reduce the number of components and parts, to combine different functionalities with as few components as possible and to be able to utilise new, better materials. MIM technology is suitable for this smart specialisation and development, strengthening the operations of growth-oriented p-k companies. The MIM investment project develops a demonstration environment for rapid piloting of MIM technologies together with companies, research training and development organisations. The investments in the pilot environment of MIM technologies utilise and complement the excellence of the strategic printing industry of Karelia University of Applied Sciences in special manufacturing technologies. The project’s vision is to complete the MIM technology value chain by investing in a unique manufacturing technology that supports the specialty and cutting edge of the engineering industry in the region. The use of new materials and production technologies with their investments requires continuous improvement of training and development according to customer needs. The result of the investment will have a direct impact on the innovation performance of enterprises. In particular, this is reflected in an increase in the own R & D efforts of enterprises in the region, as well as an increase in innovation activity, positive effects on the direct results of enterprises’ innovation activities, such as the emergence and increase in the number of new product innovations. (English)
Property / summary: 4.1 Public summary of the project (objectives, measures, results)Finnish manufacturing industry is experiencing a vigorous transformation. The impact of the economic downturn and globalisation is reflected; work is transferred to countries with lower costs, closer to the customer’s own production or closer to the market. The impact on the subcontracting industry, product development and production processes is also significant. As the global economic situation recovers, the industrial structure is projected to have changed permanently. In order to cope with the winds of change, industry needs to continuously develop its manufacturing processes and, in particular, be able to benefit from cost-effective and resource-saving methods offered by new production and material technologies. Resource efficiency has been put at the heart of, for example, the EU’s Europe 2020 strategy to create growth and jobs.The key objective of this investment project is to strengthen the opportunities for growth-oriented SMEs and research communities in the engineering industry to exploit new energy and resource efficient metal injection molding, Metal Injection Moulding (MIM), suitable for the manufacture of metallic parts. MIM technology has been developed especially for the manufacture of complex and highly mechanically high-strength pieces. This metallurgical process has the advantage of making complex copies without any post-processing operations such as machining. In practice, the MIM process, as an industrial process, is moderately complex, knowledge-intensive and requires knowledge from a wide range of technologies to ensure that a high-quality and dimensional product is created. A powder metallurgical process is an iterative manufacturing process in which in practice the manufacturing process, materials, shapes and dimensions of the product being manufactured must be refined through prototype manufacturing. Only after the iterative design and prototyping process can it be manufactured powder metallurgical parts as mass manufacture. The iteration process is carried out jointly by several actors. MIM technology is an environmentally friendly and low-carbon material-increasing manufacturing method, suitable for serial production of small pieces. At its best, 50 % material savings can be achieved in the process compared to traditional manufacturing techniques.The measures of the investment project will determine the heat treatment furnace suitable for MIM sintering with the companies and entities involved in the project and purchase a heat treatment furnace suitable for sintering metal parts with MIM technologies. The functionality of the heat treatment furnace will be tested together with the companies during the roll-up. In parallel with this investment project, a demonstration environment for new and challenging experiments with MIM technology- will be implemented. The investment in MIM technology will improve the ability to react faster to the technological development of mechanical engineering products, especially through material selection. Now and in the future, in the commercial development of equipment designs, it is necessary to reduce the number of components and parts, to combine different functionalities with as few components as possible and to be able to utilise new, better materials. MIM technology is suitable for this smart specialisation and development, strengthening the operations of growth-oriented p-k companies. The MIM investment project develops a demonstration environment for rapid piloting of MIM technologies together with companies, research training and development organisations. The investments in the pilot environment of MIM technologies utilise and complement the excellence of the strategic printing industry of Karelia University of Applied Sciences in special manufacturing technologies. The project’s vision is to complete the MIM technology value chain by investing in a unique manufacturing technology that supports the specialty and cutting edge of the engineering industry in the region. The use of new materials and production technologies with their investments requires continuous improvement of training and development according to customer needs. The result of the investment will have a direct impact on the innovation performance of enterprises. In particular, this is reflected in an increase in the own R & D efforts of enterprises in the region, as well as an increase in innovation activity, positive effects on the direct results of enterprises’ innovation activities, such as the emergence and increase in the number of new product innovations. (English) / rank
 
Normal rank
Property / summary: 4.1 Public summary of the project (objectives, measures, results)Finnish manufacturing industry is experiencing a vigorous transformation. The impact of the economic downturn and globalisation is reflected; work is transferred to countries with lower costs, closer to the customer’s own production or closer to the market. The impact on the subcontracting industry, product development and production processes is also significant. As the global economic situation recovers, the industrial structure is projected to have changed permanently. In order to cope with the winds of change, industry needs to continuously develop its manufacturing processes and, in particular, be able to benefit from cost-effective and resource-saving methods offered by new production and material technologies. Resource efficiency has been put at the heart of, for example, the EU’s Europe 2020 strategy to create growth and jobs.The key objective of this investment project is to strengthen the opportunities for growth-oriented SMEs and research communities in the engineering industry to exploit new energy and resource efficient metal injection molding, Metal Injection Moulding (MIM), suitable for the manufacture of metallic parts. MIM technology has been developed especially for the manufacture of complex and highly mechanically high-strength pieces. This metallurgical process has the advantage of making complex copies without any post-processing operations such as machining. In practice, the MIM process, as an industrial process, is moderately complex, knowledge-intensive and requires knowledge from a wide range of technologies to ensure that a high-quality and dimensional product is created. A powder metallurgical process is an iterative manufacturing process in which in practice the manufacturing process, materials, shapes and dimensions of the product being manufactured must be refined through prototype manufacturing. Only after the iterative design and prototyping process can it be manufactured powder metallurgical parts as mass manufacture. The iteration process is carried out jointly by several actors. MIM technology is an environmentally friendly and low-carbon material-increasing manufacturing method, suitable for serial production of small pieces. At its best, 50 % material savings can be achieved in the process compared to traditional manufacturing techniques.The measures of the investment project will determine the heat treatment furnace suitable for MIM sintering with the companies and entities involved in the project and purchase a heat treatment furnace suitable for sintering metal parts with MIM technologies. The functionality of the heat treatment furnace will be tested together with the companies during the roll-up. In parallel with this investment project, a demonstration environment for new and challenging experiments with MIM technology- will be implemented. The investment in MIM technology will improve the ability to react faster to the technological development of mechanical engineering products, especially through material selection. Now and in the future, in the commercial development of equipment designs, it is necessary to reduce the number of components and parts, to combine different functionalities with as few components as possible and to be able to utilise new, better materials. MIM technology is suitable for this smart specialisation and development, strengthening the operations of growth-oriented p-k companies. The MIM investment project develops a demonstration environment for rapid piloting of MIM technologies together with companies, research training and development organisations. The investments in the pilot environment of MIM technologies utilise and complement the excellence of the strategic printing industry of Karelia University of Applied Sciences in special manufacturing technologies. The project’s vision is to complete the MIM technology value chain by investing in a unique manufacturing technology that supports the specialty and cutting edge of the engineering industry in the region. The use of new materials and production technologies with their investments requires continuous improvement of training and development according to customer needs. The result of the investment will have a direct impact on the innovation performance of enterprises. In particular, this is reflected in an increase in the own R & D efforts of enterprises in the region, as well as an increase in innovation activity, positive effects on the direct results of enterprises’ innovation activities, such as the emergence and increase in the number of new product innovations. (English) / qualifier
 
point in time: 22 November 2021
Timestamp+2021-11-22T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

Revision as of 22:29, 22 November 2021

Project Q3748844 in France
Language Label Description Also known as
English
No label defined
Project Q3748844 in France

    Statements

    0 references
    126,000 Euro
    0 references
    180,000.0 Euro
    0 references
    70.0 percent
    0 references
    1 August 2015
    0 references
    31 December 2016
    0 references
    Karelia Ammattikorkeakoulu Osakeyhtiö
    0 references

    62°35'33.72"N, 29°47'20.08"E
    0 references
    80200
    0 references
    4.1 Hankkeen julkinen tiivistelmä (tavoitteet, toimenpiteet, tulokset)Suomalainen valmistava teollisuus elää voimakasta murroskautta. Taloudellisen taantuman ja globalisaation vaikutus näkyy; töitä siirretään tehtäväksi muualle, halvempien kustannusten maihin, lähemmäs asiakkaan omaa tuotantoa tai lähemmäs markkinoita. Vaikutukset myös alihankintateollisuuteen, tuotekehitykseen ja tuotantoprosesseihin ovat merkittäviä. Maailman taloudellisen tilanteen jälleen elpyessä teollisuuden rakenteen ennustetaan pysyvästi muuttuneen. Selviytyäkseen muutoksen tuulista valmistavan teollisuuden on jatkuvasti kehitettävä valmistusprosessejaan ja erityisesti kyettävä hyödyntämään uusien tuotanto- ja materiaaliteknologioiden tarjoamia kustannustehokkaista ja resursseja säästäviä menetelmiä. Resurssitehokkuus on nostettu keskeiseen rooliin esimerkiksi EU:n Eurooppa 2020 -strategiassa, jolla pyritään luomaan kasvua ja työpaikkoja.Tämän investointihankkeen keskeisenä tavoitteena on vahvistaa konepajateollisuuden kasvuhakuisten p-k yritysten ja tutkimusyhteisöjen mahdollisuuksia hyödyntää uusia metallisten osien valmistukseen soveltuvia energia- ja resurssitehokkaita metallien ruiskuvalun, Metal Injection Moulding (MIM) valmistusmenetelmiä. MIM-teknologia on kehitetty erityisesti monimutkaisten ja mekaanisilta ominaisuuksiltaan erittäin lujien kappaleiden valmistukseen. Tämän metallurgisen menetelmän etuna on monimuotoisten kappaleiden valmistaminen ilman jälkikäsittelytoimenpiteitä kuten koneistaminen. Käytännössä MIM-prosessi on teollisena prosessina kohtalaisen monimutkainen, osaamisintensiivinen ja vaatii tietoa useilta eri tekniikan aloilta varmistaakseen, että laadukas ja mittatarkka tuote syntyy. Pulverimetallurginen prosessi on iteratiivinen valmistusprosessi, jossa käytännössä prototyyppivalmistuksen kautta on hiottava valmistettavan tuotteen valmistusprosessi, materiaalit, muodot ja mitat kohdalleen. Vasta iteratiivisen suunnittelu ja prototypointi prosessin jälkeen kyetään valmistamaan pulverimetallurgisia osia massavalmistuksena. Iterointiprosessin toteuttavat useat eri toimijat yhdessä. MIM-teknologia on ympäristöystävällinen ja vähähiilinen materiaalia lisäävä valmistusmenetelmä, joka soveltuu pienten kappaleiden sarjatuotantomenetelmäksi. Parhaimmillaan prosessissa päästään 50% materiaalisäästöihin perinteisiin valmistustekniikoihin verrattuna.Investointihankkeen toimenpiteinä määritetään hankkeessa mukana olevien yritysten ja yhteisöjen kanssa MIM-sintraukseen sopiva lämpökäsittelyuuni oheislaitteineen ja hankitaan MIM-teknologioilla valmistettavien metallisten osien sintraamiseen soveltuva lämpökäsittelyuuni. Lämpökäsittelyuunin toimivuutta testataan yhdessä yritysten kanssa ylösajon aikana. Rinnakkaisena tämän investointihankkeen kanssa toteutetaan Demonstraatioympäristö MIM-teknologian uusiin ja haasteellisiin kokeiluihin- hanke. Haettava MIM-teknologia investointi parantaa valmiuksia reagoida nopeammin konepajateknisten tuotteiden teknologiseen kehittämiseen erityisesti materiaalinvalinnan avulla. Nyt ja tulevaisuudessa laitekonstruktioiden kaupallisessa kehittämisessä tarpeena on vähentää komponenttien sekä osien määrää, yhdistää eri toiminnallisuuksia mahdollisimman vähään määrään osia ja kyetä hyödyntämään uusia parempia materiaaleja. MIM-teknologia sopii tähän älykkääseen erikoistumiseen ja kehittämiseen vahvistaen kasvuhakuisten p-k yritysten toimintaa.MIM-investointihankkeessa kehitetään demonstraatioympäristöä nopeaan MIM-teknologioiden pilotointiin yhdessä yritysten, tutkimus- koulutus sekä kehittämisorganisaatioiden kanssa. MIM-teknologioiden pilotointiympäristön investoinnit hyödyntävät ja täydentävät Karelia ammattikorkeakoulun tarkkuustekniikan strategisen paino-alan huippuosaamista erikoisvalmistusteknologioissa. Hankkeen visio on MIM-teknologia-arvoketjun täydentäminen investoimalla ainutlaatuiseen valmistusteknologiaan, joka tukee alueen konepajateollisuuden erikois- ja kärkiosaamista. Uusien materiaali ja tuotantoteknologioiden hyödyntäminen investointeineen edellyttää koulutuksen ja kehittämisen jatkuvaa parantamista asiakastarpeiden mukaan. Investoinnin tuloksena syntyy suoria vaikutuksia yritysten innovaatiotoimintaan. Erityisesti tämä näkyy alueen yritysten omien tutkimus- ja kehityspanostusten lisääntymisenä sekä innovaatiotoiminnan tehostumisena, positiivisina vaikutuksina yritysten innovaatiotoiminnan välittömissä tuloksissa, kuten uusien tuoteinnovaatioiden syntymisessä ja niiden määrän kasvuna. Myös yhteistyö ja verkostoituminen lisääntyvät osaamisympäristön hyödyntämisessä sekä Karelian ja yritysten välillä että yritysten kesken.Karelian toiminnassa MIM-investointi liittyy uudenlaisen innovaatioympäristön kehittämiseen, joka yhdistää eri koulutus- sekä tieteenaloja avoimeksi monialaiseksi innovaatioympäristöksi. MIM-investointi on osana Karelian liiketalouden ja tekniikan keskuksen Wärtsilä talon laboratorioiden oppimisympäristöjen kehittämistä, joissa yhdistyy puurakentamisen j (Finnish)
    0 references
    4.1 Public summary of the project (objectives, measures, results)Finnish manufacturing industry is experiencing a vigorous transformation. The impact of the economic downturn and globalisation is reflected; work is transferred to countries with lower costs, closer to the customer’s own production or closer to the market. The impact on the subcontracting industry, product development and production processes is also significant. As the global economic situation recovers, the industrial structure is projected to have changed permanently. In order to cope with the winds of change, industry needs to continuously develop its manufacturing processes and, in particular, be able to benefit from cost-effective and resource-saving methods offered by new production and material technologies. Resource efficiency has been put at the heart of, for example, the EU’s Europe 2020 strategy to create growth and jobs.The key objective of this investment project is to strengthen the opportunities for growth-oriented SMEs and research communities in the engineering industry to exploit new energy and resource efficient metal injection molding, Metal Injection Moulding (MIM), suitable for the manufacture of metallic parts. MIM technology has been developed especially for the manufacture of complex and highly mechanically high-strength pieces. This metallurgical process has the advantage of making complex copies without any post-processing operations such as machining. In practice, the MIM process, as an industrial process, is moderately complex, knowledge-intensive and requires knowledge from a wide range of technologies to ensure that a high-quality and dimensional product is created. A powder metallurgical process is an iterative manufacturing process in which in practice the manufacturing process, materials, shapes and dimensions of the product being manufactured must be refined through prototype manufacturing. Only after the iterative design and prototyping process can it be manufactured powder metallurgical parts as mass manufacture. The iteration process is carried out jointly by several actors. MIM technology is an environmentally friendly and low-carbon material-increasing manufacturing method, suitable for serial production of small pieces. At its best, 50 % material savings can be achieved in the process compared to traditional manufacturing techniques.The measures of the investment project will determine the heat treatment furnace suitable for MIM sintering with the companies and entities involved in the project and purchase a heat treatment furnace suitable for sintering metal parts with MIM technologies. The functionality of the heat treatment furnace will be tested together with the companies during the roll-up. In parallel with this investment project, a demonstration environment for new and challenging experiments with MIM technology- will be implemented. The investment in MIM technology will improve the ability to react faster to the technological development of mechanical engineering products, especially through material selection. Now and in the future, in the commercial development of equipment designs, it is necessary to reduce the number of components and parts, to combine different functionalities with as few components as possible and to be able to utilise new, better materials. MIM technology is suitable for this smart specialisation and development, strengthening the operations of growth-oriented p-k companies. The MIM investment project develops a demonstration environment for rapid piloting of MIM technologies together with companies, research training and development organisations. The investments in the pilot environment of MIM technologies utilise and complement the excellence of the strategic printing industry of Karelia University of Applied Sciences in special manufacturing technologies. The project’s vision is to complete the MIM technology value chain by investing in a unique manufacturing technology that supports the specialty and cutting edge of the engineering industry in the region. The use of new materials and production technologies with their investments requires continuous improvement of training and development according to customer needs. The result of the investment will have a direct impact on the innovation performance of enterprises. In particular, this is reflected in an increase in the own R & D efforts of enterprises in the region, as well as an increase in innovation activity, positive effects on the direct results of enterprises’ innovation activities, such as the emergence and increase in the number of new product innovations. (English)
    22 November 2021
    0 references

    Identifiers

    0 references