HIGH PERFORMANCE BOOKSHOPS FOR MATRIX AND APPLICATION FUNCTION CALCULATION (Q3144409): Difference between revisions
Jump to navigation
Jump to search
(Changed an Item: Edited by the infer coords bot - inferring coordinates from location) |
(Changed an Item: Edited by the materialized bot - inferring region from the coordinates) |
||
Property / contained in NUTS | |||
Property / contained in NUTS: Province of Valencia / rank | |||
Normal rank |
Revision as of 13:59, 10 October 2021
Project Q3144409 in Spain
Language | Label | Description | Also known as |
---|---|---|---|
English | HIGH PERFORMANCE BOOKSHOPS FOR MATRIX AND APPLICATION FUNCTION CALCULATION |
Project Q3144409 in Spain |
Statements
23,837.0 Euro
0 references
47,674.0 Euro
0 references
50.0 percent
0 references
1 January 2018
0 references
31 December 2020
0 references
UNIVERSIDAD POLITECNICA DE VALENCIA
0 references
46250
0 references
EL OBJETIVO DEL PRESENTE PROYECTO ES EL DESARROLLO DE ALGORITMOS Y LIBRERIAS COMPUTACIONALES DE ALTAS PRESTACIONES (HPC) PARA EL CALCULO DE FUNCIONES DE MATRICES BASADAS EN LA NUEVA FAMILIA DE METODOS DE EVALUACION DE POLINOMIOS MATRICIALES, RECIENTEMENTE DESCUBIERTAS, MAS EFICIENTES QUE EL METODO DE PATERSON-STOCKMEYER Y EN NUEVOS DESARROLLOS DE HERMITE, ASI COMO SUS APLICACIONES. LA OPORTUNIDAD E IDONEIDAD DE LA PROPUESTA SE BASA EN LOS RECIENTES HALLAZGOS DEL GRUPO DE INVESTIGACION MOSTRANDO QUE:_x000D_ 1) ES POSIBLE EVALUAR POLINOMIOS MATRICIALES DE FORMA MAS EFICIENTE QUE USANDO EL METODO DEL ESTADO DEL ARTE DE PATERSON-STOCKMEYER. DESDE SU PUBLICACION, NO HABIA HABIDO NINGUN AVANCE EN LA MEJORA DE LA EFICIENCIA DE LA COMPUTACION DE POLINOMIOS MATRICIALES. CASI CINCUENTA AÑOS MAS TARDE, HEMOS DEMOSTRADO EN QUE EXISTE UNA FAMILIA DE METODOS GENERALES DE COMPUTACION DE POLINOMIOS MATRICIALES MAS EFICIENTES._x000D_ 2) LAS APROXIMACIONES POLINOMIALES, EN CONTRA DE LO QUE SE PENSABA, INCLUSO CON EL METODO DE PATERSON-STOCKMEYER, PERMITEN OBTENER PRECISIONES QUE SUPERAN A LAS RACIONALES CON SIMILAR O INCLUSO INFERIOR COSTE. APLICANDO LA NUEVA FAMILIA DE METODOS DE COMPUTACION DE POLINOMIOS MATRICIALES SE CONSEGUIRAN EFICIENCIAS MUCHO MAYORES, SUPERANDO CON CRECES LA EFICIENCIA DE LAS APROXIMACIONES RACIONALES. POR OTRO LADO, SE HAN OBTENIDO NUEVOS DESARROLLOS EN SERIES DE POLINOMIOS MATRICIALES DE HERMITES QUE PERMITEN OBTENER MAYOR PRECISION._x000D_ 3) LA ESCASEZ DE SOFTWARE LIBRE Y COMERCIAL DE ALTAS PRESTACIONES PARA EL CALCULO DE FUNCIONES DE MATRICES, FUNDAMENTAL PARA LAS APLICACIONES CON MATRICES DE GRAN TAMAÑO Y TIEMPOS DE PROCESO LIMITADOS, SUPONE UN GRAN INCONVENIENTE. TRAS LOS DESCUBRIMIENTOS DE 1), ESTE SOFTWARE QUEDA OBSOLETO, SOBRE TODO EL BASADO EN APROXIMACIONES RACIONALES._x000D_ 4) LA EXPERIENCIA DEL GRUPO CON 5 PROYECTOS DE INVESTIGACION ESTATALES, AUTONOMICOS Y DE LA UPV RELACIONADOS CON LA PROPUESTA, Y UNA BRILLANTE TRAYECTORIA CON 29 PUBLICACIONES DE ALTO IMPACTO EN LOS ULTIMOS AÑOS (2011-17) Y UN TOTAL DE 5 PATENTES Y MAS DE 160 PUBLICACIONES A LO LARGO DE LAS CARRERAS DE LOS MIEMBROS DEL GRUPO._x000D_ ASI, LOS OBJETIVOS DEL PROYECTO SON:_x000D_ A) IMPLEMENTACION HPC DE NUEVOS METODOS Y ALGORITMOS DE TAYLOR Y HERMITE PARA EL CALCULO DE FUNCIONES DE MATRICES BASADOS EN LAS NUEVAS APROXIMACIONES POLINOMICAS: DESARROLLO DE LIBRERIAS EFICIENTES PARA ARQUITECTURAS MULTINUCLEO Y DE MEMORIA COMPARTIDA USANDO EL ENTORNO DE PROGRAMACION PARALELA OPENMP Y LIBRERIAS HPC TIPO BLAS Y LAPACK, JUNTO CON CODIGOS EFICIENTES PARA TARJETAS GRAFICAS (GPGPUS) BASADOS EN CUDA, CUBLAS Y CULATOOLS._x000D_ B) APLICACION DE LAS LIBRERIAS A PROBLEMAS DE INGENIERIA Y CIENCIAS APLICADAS CON MATRICES DE GRAN TAMAÑO Y/O LIMITACIONES IMPORTANTES EN EL TIEMPO DE PROCESO._x000D_ C) FORMACION DE DOCTORES EN EL TEMA DE LA PROPUESTA._x000D_ SE REALIZARA LA DIFUSION DE LOS RESULTADOS Y DEL SOFTWARE IMPLEMENTADO EN REVISTAS Y CONGRESOS INTERNACIONALES DE ALTO IMPACTO Y SEMINARIOS EN CENTROS DE INVESTIGACION DE PRESTIGIO, Y SE PUBLICITARA A TRAVES DE LA WEB Y TWITTER, DE MANERA QUE EL SOFTWARE DESARROLLADO SE CONVIERTA EN EL SOFTWARE LIBRE DE REFERENCIA A NIVEL MUNDIAL PARA CALCULO DE FUNCIONES DE MATRICES Y SITUE A LA INVESTIGACION ESPAÑOLA EN DICHO TEMA AL MAS ALTO NIVEL INTERNACIONAL. (Spanish)
0 references
THE OBJECTIVE OF THE PRESENT PROJECT IS THE DEVELOPMENT OF ALGORITHMS AND HIGH PERFORMANCE COMPUTATIONAL (HPC) LIBRARIES FOR THE COMPUTATION OF MATRIX FUNCTIONS BASED ON THE NEW FAMILY OF METHODS DISCOVERED FOR EVALUATING MATRIX POLYNOMIALS, WHICH ARE MORE EFFICIENT THAN THE PATERSON-STOCKMEYER'S METHOD. THE PRESENT PROJECT ALSO INCLUDES THE LATEST DEVELOPMENTS OF HERMITE SERIES AND THEIR APPLICATIONS. THE SPECIFIC WORKPLAN OF THIS PROPOSAL IS MOST SUITABLE FOR OUR RESEARCH GROUP AND BASED ON THEIR RECENT FINDINGS. THE CORE POINTS ARE:_x000D_ 1) THE POSSIBILITY TO EVALUATE MATRIX POLYNOMIALS MORE EFFICIENTLY THAN USING THE STATE-OF-THE-ART METHOD BY PATERSON-STOCKMEYER. SINCE THEIR PUBLICATION NO PROGRESS HAS BEEN MADE IN IMPROVING THE COMPUTATIONAL EFFICIENCY OF MATRIX POLYNOMIALS. ALMOST FIFTY YEARS LATER, WE HAVE DEMONSTRATED IN THAT THERE IS A WHOLE FAMILY OF GENERAL METHODS OF COMPUTING MORE EFFICIENTLY MATRIX POLYNOMIALS._x000D_ 2) POLYNOMIAL APPROXIMATIONS, CONTRARY TO WHAT WAS THOUGHT, EVEN WITH THE PATERSON-STOCKMEYER METHOD, ALLOW TO OBTAIN PRECISIONS THAT SURPASS RATIONAL APPROXIMATIONS WITH SIMILAR OR EVEN LOWER COST. APPLYING SUCH NEW COMPUTATIONAL METHODS FOR COMPUTING MATRIX POLYNOMIALS WILL ACHIEVE MUCH GREATER EFFICIENCY, SURPASSING BY FAR THE EFFICIENCY OF RATIONAL APPROXIMATIONS. ON THE OTHER HAND, NEW DEVELOPMENTS HAVE BEEN OBTAINED IN SERIES OF HERMITE MATRIX POLYNOMIALS THAT ALLOW TO OBTAIN GREATER ACCURACY._x000D_ 3) THE LACK OF FREE AND COMMERCIAL HIGH-PERFORMANCE SOFTWARE FOR THE COMPUTATION OF MATRIX FUNCTIONS, WHICH ARE FUNDAMENTAL FOR APPLICATIONS WITH LARGE MATRICES AND LIMITED PROCESSING TIMES. AFTER THE DISCOVERIES OF 1), THIS SOFTWARE IS RENDERED OBSOLETE, ESPECIALLY IN SOFTWARE BASED ON RATIONAL APPROXIMATIONS._x000D_ 4) THE GROUP'S EXPERIENCE IN THE SUBJECT MATTER OF THE PROPOSAL THEME WITH ALREADY FIVE RELATED RESEARCH PROJECTS IN THE FIELD (FINANCED BY THE CENTRAL AND LOCAL GOVERNMENT, AS WELL AS THE UPV). MOREOVER, A BRILLIANT RECORD OF 29 HIGH-IMPACT PUBLICATIONS IN THE LAST FOUR YEARS (2011-17), A TOTAL OF FIVE PATENTS, AND MORE THAN 160 PUBLICATIONS THROUGHOUT THE SCIENTIFIC CAREERS OF ALL GROUP MEMBERS._x000D_ THUS, THE OBJECTIVES OF THE PROJECT ARE:_x000D_ A) HPC DEVELOPMENT AND IMPLEMENTATION OF THE TAYLOR AND HERMITE METHODS AND ALGORITHMS FOR CALCULATING MATRIX FUNCTIONS BASED ON THE NEW POLYNOMIAL APPROXIMATIONS: THE CONCEPTION OF AN EFFICIENT LIBRARY FOR MULTICORE AND SHARED-MEMORY ARCHITECTURES USING THE OPENMP PARALLEL PROGRAMMING ENVIRONMENT. ALSO HPC LIBRARIES BASED ON BLAS AND LAPACK, ALONG WITH EFFICIENT CODES FOR GRAPHICS CARDS (GPGPUS) USING CUDA, CUBLAS AND CULATOOLS._x000D_ B) APPLICATION OF THESE LIBRARIES TO VARIOUS PROBLEMS IN ENGINEERING AND THE APPLIED SCIENCES, USUALLY PROBLEMS WITH LARGE MATRICES AND/OR IMPORTANT LIMITATIONS ON PROCESS TIME._x000D_ C) TRAINING OF PHD CANDIDATES IN THE SUBJECT OF THE PROPOSAL._x000D_ THE DISSEMINATION OF THE RESULTS AND IMPLEMENTED SOFTWARE IN HIGH-IMPACT INTERNATIONAL JOURNALS, INTERNATIONAL CONFERENCES, AND THE PRESENTATION OF SEMINARS AT PRESTIGIOUS RESEARCH CENTERS. FURTHERMORE, DISSEMINATION AND PUBLICATION OF THE LATEST RESULTS VIA A DEDICATED WEBSITE AND TWITTER, SO THAT THE DEVELOPED SOFTWARE HOPEFULLY MAY BECOME A FREE, WORLDWIDE-REFERENCE SOFTWARE FOR CALCULATING MATRIX FUNCTIONS AND PLACING SPANISH RESEARCH IN THIS FIELD AT THE HIGHEST INTERNATIONAL LEVEL. (English)
0 references
Valencia
0 references
Identifiers
TIN2017-89314-P
0 references