Searching for molecular interactions that regulate photosynthetic electron flow at the level of cytochrome b6f using optical and paramagnetic resonance spectroscopy (Q84325): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed label, description and/or aliases in 2 languages: Changing unique label-description pair)
(‎Removed claim: financed by (P890): Directorate-General for Regional and Urban Policy (Q8361), Removing unnecessary financed by statement)
Property / financed by
 
Property / financed by: Directorate-General for Regional and Urban Policy / rank
Normal rank
 

Revision as of 05:19, 29 October 2020

Project Q84325 in Poland
Language Label Description Also known as
English
Searching for molecular interactions that regulate photosynthetic electron flow at the level of cytochrome b6f using optical and paramagnetic resonance spectroscopy
Project Q84325 in Poland

    Statements

    0 references
    3,499,570.0 zloty
    0 references
    839,896.80 Euro
    13 January 2020
    0 references
    3,499,570.0 zloty
    0 references
    839,896.80 Euro
    13 January 2020
    0 references
    100.0 percent
    0 references
    1 December 2018
    0 references
    30 November 2021
    0 references
    UNIWERSYTET JAGIELLOŃSKI
    0 references
    Photosynthesis is a crucial energy conserving process supporting life on earth. In this process, accommodation of cyclic and linear electron flow (CET and LET, respectively) secures efficiency of reduction of CO2 into organic form. While molecular mechanisms of regulation between CET and LET remain largely unknown, cytochrome (cyt) b6f complex is considered to be a key point of it. We hypothesize that a newly discovered metastable radical intermediate of cyt b6f provides means for kinetic control to balance between LET and CET. From this perspective, we will seek to unravel structural basis and dynamics of interaction between cyt b6f and its plausible CET protein partners, define the sequence of electron transfer steps that engage cyt b6f into CET and describe thermodynamic basis for control of CET. This will provide fundamentals for understanding regulation of photosynthesis, as a step towards development of enhanced photosynthetic organisms to increase efficiency in plant production. (Polish)
    0 references
    Photosynthesis is a crucial energy conserving process supporting life on earth. In this process, accommodation of cyclic and linear electron flow (CET and LET, respectively) secures efficiency of reduction of CO2 into organic form. While molecular mechanisms of regulation between CET and LET remain largely unknown, cytochrome (cyt) b6f complex is considered to be a key point of it. We hypothesise that a newly discovered metastable radical intermediate of cyt b6f provides means for kinetic control to balance between LET and CET. From this perspective, we will seek to unravel structural basis and dynamics of interaction between cyt b6f and its Plausible CET protein partners, define the sequence of electron transfer steps that engage cyt b6f into CET and describe thermodynamic basis for control of CET. This will provide fundamentals for understanding regulation of photosynthesis, as a step towards development of enhanced photosynthetic organisms to increase efficiency in plant production. (English)
    14 October 2020
    0 references

    Identifiers

    POIR.04.04.00-00-5B54/17
    0 references