Understanding Bacterial Nucleotide Excision Repair at the Level of the Single Molecule Inside Living Cells. (Q84178)

From EU Knowledge Graph
Revision as of 12:46, 19 January 2022 by DG Regio (talk | contribs) (‎Changed label, description and/or aliases in es, and other parts: Adding Spanish translations)
Jump to navigation Jump to search
Project Q84178 in Poland
Language Label Description Also known as
English
Understanding Bacterial Nucleotide Excision Repair at the Level of the Single Molecule Inside Living Cells.
Project Q84178 in Poland

    Statements

    0 references
    2,949,970.0 zloty
    0 references
    707,992.80 Euro
    13 January 2020
    0 references
    2,949,970.0 zloty
    0 references
    707,992.80 Euro
    13 January 2020
    0 references
    100.0 percent
    0 references
    1 November 2016
    0 references
    30 April 2020
    0 references
    UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU
    0 references
    Q2513981 (Deleted Item)
    0 references
    Malfunctioning DNA repair lead to an accumulation of mutations, which frequently results in cancer. The Nucleotide Excision Repair (NER) pathway removes a DNA lesions caused by UV light, cigarette smoke and chemical mutagens. NER is highly conserved, and studying the simpler NER in bacteria provides key insight into human NER. I propose an interdisciplinary approach to understand the mechanistic details of bacterial NER in living cells. I will use a combination of cutting-edge single-molecule methods to elucidate how DNA is repaired inside living cells. I will use super-resolution microscopy combined to study the behaviour of individual NER proteins. To complement this, conventional biochemistry, cell biology, genetics, smFRET assays, FCS and TIRF microscopy will be used. Together, this will provide a comprehensive understanding of the bacterial NER pathway, and constitute the first steps toward my ultimate goal, which is to understand how human cells repair DNA. (Polish)
    0 references
    Malfunctioning DNA repair lead to an accumulation of mutations, which frequently results in cancer. The Nucleotide Excision Repair (NER) pathway removes a DNA lesions caused by UV light, cigarette smoke and chemical mutagens. NER is highly conserved, and studying the simpler NER in bacteria provides key insight into human NER. I propose an interdisciplinary approach to understand the mechanistic details of bacterial NER in living cells. I will use a combination of cutting-edge single-molecule methods to elucidate how DNA is repaired inside living cells. I will use super-resolution microscopy combined to study the behaviour of individual NER proteins. To complement this, conventional Biochemistry, cell biology, genetics, SmFRET assays, FCS and tirf microscopy will be used. Together, this will provide a comprehensive understanding of the bacterial NER pathway, and constitute the first steps towards my ultimate goal, which is to understand how human cells repair DNA. (English)
    14 October 2020
    0 references
    Le dysfonctionnement de la réparation de l’ADN entraîne une accumulation de mutations, ce qui entraîne souvent un cancer. La voie de réparation de l’excision nucléotide (NER) élimine une lésion de l’ADN causée par la lumière UV, la fumée de cigarette et les mutagènes chimiques. Le NER est très conservé, et l’étude du NER plus simple dans les bactéries fournit un aperçu clé du NER humain. Je propose une approche interdisciplinaire pour comprendre les détails mécaniques du NER bactérien dans les cellules vivantes. J’utiliserai une combinaison de méthodes monomoléculaires de pointe pour élucider la façon dont l’ADN est réparé à l’intérieur des cellules vivantes. J’utiliserai la microscopie super-résolution combinée pour étudier le comportement des protéines NER individuelles. Pour compléter cela, on utilisera la biochimie classique, la biologie cellulaire, la génétique, les tests smFRET, la microscopie FCS et la microscopie TIRF. Ensemble, cela fournira une compréhension complète de la voie bactérienne NER, et constituera les premières étapes vers mon objectif ultime, qui est de comprendre comment les cellules humaines réparent l’ADN. (French)
    30 November 2021
    0 references
    Eine Fehlfunktion der DNA-Reparatur führt zu einer Ansammlung von Mutationen, die häufig zu Krebs führen. Der Nucleotide Excision Repair (NER) Pfad entfernt DNA-Läsionen, die durch UV-Licht, Zigarettenrauch und chemische Mutagene verursacht werden. NER ist hoch erhalten, und das Studium der einfacheren NER in Bakterien bietet einen wichtigen Einblick in menschliche NER. Ich schlage einen interdisziplinären Ansatz vor, um die mechanischen Details von bakteriellen NER in lebenden Zellen zu verstehen. Ich werde eine Kombination aus modernsten Single-Molekül-Methoden verwenden, um zu klären, wie DNA in lebenden Zellen repariert wird. Ich werde eine hochauflösende Mikroskopie verwenden, um das Verhalten einzelner NER-Proteine zu untersuchen. Dazu werden konventionelle Biochemie, Zellbiologie, Genetik, smFRET-Assays, FCS- und TIRF-Mikroskopie verwendet. Gemeinsam wird dies ein umfassendes Verständnis des bakteriellen NER-Wegs liefern und die ersten Schritte in Richtung meines letzten Ziels darstellen, nämlich zu verstehen, wie menschliche Zellen DNA reparieren. (German)
    7 December 2021
    0 references
    Defecte DNA-reparatie leidt tot een accumulatie van mutaties, wat vaak resulteert in kanker. De Nucleotide Excision Repair (NER) route verwijdert een DNA laesies veroorzaakt door UV-licht, sigarettenrook en chemische mutagene stoffen. NER is zeer geconserveerd, en het bestuderen van de eenvoudigere NER in bacteriën geeft een belangrijk inzicht in menselijke NER. Ik stel een interdisciplinaire aanpak voor om de Mechanistische details van bacteriële NER in levende cellen te begrijpen. Ik zal een combinatie van geavanceerde single-molecule methoden gebruiken om te verduidelijken hoe DNA wordt gerepareerd in levende cellen. Ik zal super-resolutie microscopie gecombineerd gebruiken om het gedrag van individuele NER-eiwitten te bestuderen. Om dit aan te vullen, zullen conventionele biochemie, celbiologie, genetica, smFRET assays, FCS en TIRF microscopie worden gebruikt. Samen zal dit een uitgebreid begrip bieden van de bacteriële NER-route en de eerste stappen vormen naar mijn uiteindelijke doel, namelijk begrijpen hoe menselijke cellen DNA repareren. (Dutch)
    16 December 2021
    0 references
    Il malfunzionamento della riparazione del DNA porta ad un accumulo di mutazioni, che spesso provoca il cancro. La via Nucleotide Excision Repair (NER) rimuove una lesione del DNA causata dalla luce UV, dal fumo di sigaretta e dai mutageni chimici. NER è altamente conservato, e lo studio del NER più semplice nei batteri fornisce informazioni chiave sul NER umano. Propongo un approccio interdisciplinare per comprendere i dettagli meccanici del NER batterico nelle cellule viventi. Userò una combinazione di metodi di monomolecola all'avanguardia per chiarire come il DNA viene riparato all'interno delle cellule viventi. Userò microscopia a super-risoluzione combinata per studiare il comportamento delle singole proteine NER. A complemento di questo, saranno utilizzati biochimica convenzionale, biologia cellulare, genetica, test smFRET, FCS e microscopia TIRF. Insieme, questo fornirà una comprensione completa del percorso NER batterico e costituirà i primi passi verso il mio obiettivo finale, che è quello di capire come le cellule umane riparano il DNA. (Italian)
    16 January 2022
    0 references
    El mal funcionamiento de la reparación del ADN lleva a una acumulación de mutaciones, que con frecuencia resulta en cáncer. La vía de reparación de la escisión del nucleótido (NER) elimina las lesiones del ADN causadas por la luz UV, el humo del cigarrillo y los mutágenos químicos. NER es altamente conservado, y el estudio de la NER más simple en bacterias proporciona una visión clave del NER humano. Propongo un enfoque interdisciplinario para entender los detalles mecánicos de la NER bacteriana en las células vivas. Usaré una combinación de métodos de una sola molécula de vanguardia para dilucidar cómo se repara el ADN dentro de las células vivas. Usaré microscopía de superresolución combinada para estudiar el comportamiento de las proteínas NER individuales. Para complementar esto, se utilizarán bioquímicas convencionales, biología celular, genética, ensayos smFRET, microscopía FCS y TIRF. Juntos, esto proporcionará una comprensión integral de la vía bacteriana NER, y constituirá los primeros pasos hacia mi objetivo final, que es entender cómo las células humanas reparan el ADN. (Spanish)
    19 January 2022
    0 references

    Identifiers

    POIR.04.04.00-00-1CA9/16
    0 references