Phononic Crystals for Heat and Sound Nanodevices (Q84192)

From EU Knowledge Graph
Revision as of 23:16, 15 January 2022 by DG Regio (talk | contribs) (‎Changed label, description and/or aliases in it, and other parts: Adding Italian translations)
Jump to navigation Jump to search
Project Q84192 in Poland
Language Label Description Also known as
English
Phononic Crystals for Heat and Sound Nanodevices
Project Q84192 in Poland

    Statements

    0 references
    687,790.0 zloty
    0 references
    165,069.6 Euro
    13 January 2020
    0 references
    687,790.0 zloty
    0 references
    165,069.6 Euro
    13 January 2020
    0 references
    100.0 percent
    0 references
    1 January 2017
    0 references
    31 December 2018
    0 references
    UNIWERSTET IM. ADAMA MICKIEWICZA W POZNANIU
    0 references
    0 references
    Energy transport phenomena such as sound and heat flow are fundamental issues of basic research as well as a key problem of many everyday technological applications. The need for high frequency phonons management arises from new challenges brought by the quest of continuous improvement and miniaturisation of nanodevices. Therefore, novel easily manageable, cost efficient and environment friendly functional material structures for sound and heat control are highly attractive for numerous applications in nanotechnology, telecommunication and energy harvesting. The project aims to develop new materials, establish comprehensive understanding and ability to measure and control high frequency phonons at the nanoscale propagating in silicon phononic crystal membranes. The project is built on three pillars: nanofabrication based on the well-developed technology of silicon, investigation of hypersonic phonon propagation and thermal transport by means of Brillouin and Raman spectroscopy. (Polish)
    0 references
    Energy transport phenomena such as sound and heat flow are fundamental issues of basic research as well as a key problem of many everyday technological applications. The need for high frequency phonons management arises from new challenges brought by the quest of continuous improvement and miniaturisation of nanodevices. Thus, novel easily manageable, cost efficient and environment friendly functional material structures for sound and heat control are highly attractive for numerous applications in nanotechnology, telecommunication and energy harvesting. The project aims to develop new materials, establish comprehensive understanding and ability to measure and control high frequency phonons at the nanoscale Propagating in silicon phononic crystal membranes. The project is built on three pillars: nanofabrication based on the well-developed technology of silicon, investigation of hypersonic phonon Propagation and thermal transport by means of Brillouin and Raman spectroscopy. (English)
    14 October 2020
    0 references
    Les phénomènes de transport d’énergie tels que le bruit et le flux de chaleur sont des questions fondamentales de la recherche fondamentale ainsi qu’un problème clé de nombreuses applications technologiques quotidiennes. La nécessité d’une gestion des phonons à haute fréquence découle des nouveaux défis posés par la quête d’amélioration continue et de miniaturisation des nanodispositifs. Par conséquent, de nouvelles structures fonctionnelles faciles à gérer, rentables et respectueuses de l’environnement pour le contrôle du son et de la chaleur sont très attrayantes pour de nombreuses applications dans les domaines de la nanotechnologie, des télécommunications et de la collecte d’énergie. Le projet vise à développer de nouveaux matériaux, à établir une compréhension globale et la capacité de mesurer et de contrôler les phonons à haute fréquence à l’échelle nanométrique dans les membranes de cristaux phononiques de silicium. Le projet repose sur trois piliers: nanofabrication basée sur la technologie bien développée du silicium, étude de la propagation hypersonique des phonons et du transport thermique par spectroscopie Brillouin et Raman. (French)
    30 November 2021
    0 references
    Energietransportphänomene wie Schall und Wärmefluss sind grundlegende Fragen der Grundlagenforschung sowie ein zentrales Problem vieler alltäglicher technologischer Anwendungen. Die Notwendigkeit eines Hochfrequenzphononsmanagements ergibt sich aus neuen Herausforderungen, die durch das Streben nach kontinuierlicher Verbesserung und Miniaturisierung von Nanogeräten entstehen. Deshalb sind neuartige, leicht handhabbare, kostengünstige und umweltfreundliche funktionale Materialstrukturen für Schall- und Wärmesteuerung für zahlreiche Anwendungen in der Nanotechnologie, Telekommunikation und Energieernte hoch attraktiv. Das Projekt zielt darauf ab, neue Materialien zu entwickeln, ein umfassendes Verständnis und die Fähigkeit zur Messung und Steuerung von Hochfrequenzphononen bei der nanoskaligen Vermehrung in Siliziumphononkristallmembranen zu etablieren. Das Projekt baut auf drei Säulen auf: Nano-Fabrication basierend auf der gut entwickelten Technologie des Siliziums, Untersuchung der hypersonic phonon Vermehrung und thermischen Transport mit Hilfe von Brillouin und Raman Spektroskopie. (German)
    7 December 2021
    0 references
    Energietransportfenomenen zoals geluids- en warmtestroom zijn fundamentele kwesties van fundamenteel onderzoek en een belangrijk probleem van veel dagelijkse technologische toepassingen. De behoefte aan hoogfrequente fononsbeheer vloeit voort uit nieuwe uitdagingen die voortvloeien uit de zoektocht naar voortdurende verbetering en miniaturisering van nanoapparaten. Daarom zijn nieuwe gemakkelijk beheersbare, kostenefficiënte en milieuvriendelijke functionele materiaalstructuren voor geluids- en warmteregeling zeer aantrekkelijk voor tal van toepassingen in nanotechnologie, telecommunicatie en energiewinning. Het project is gericht op het ontwikkelen van nieuwe materialen, het creëren van een uitgebreid begrip en vermogen om hoge frequentie phonons te meten en te controleren op de nanoschaal die zich in siliciumfononkristalmembranen voortplanten. Het project is opgebouwd uit drie pijlers: nanofabricage gebaseerd op de goed ontwikkelde technologie van silicium, onderzoek van hypersonische fononvermeerdering en thermisch transport door middel van Brillouin en Raman spectroscopie. (Dutch)
    16 December 2021
    0 references
    I fenomeni dei trasporti energetici, come il flusso sonoro e il flusso di calore, sono questioni fondamentali della ricerca di base, nonché un problema fondamentale di molte applicazioni tecnologiche quotidiane. La necessità di una gestione dei fononi ad alta frequenza nasce dalle nuove sfide poste dalla ricerca del miglioramento continuo e della miniaturizzazione dei nanodispositivi. Pertanto, nuove strutture funzionali funzionali per il controllo del suono e del calore, facilmente gestibili, efficienti in termini di costi e rispettose dell'ambiente, sono molto attraenti per numerose applicazioni nelle nanotecnologie, nelle telecomunicazioni e nella raccolta di energia. Il progetto mira a sviluppare nuovi materiali, a stabilire una comprensione completa e la capacità di misurare e controllare i fononi ad alta frequenza nella propagazione di nanoscala nelle membrane cristalline fononiche del silicio. Il progetto si articola su tre pilastri: nanofabbricazione basata sulla tecnologia ben sviluppata del silicio, indagine della propagazione fononica ipersonica e trasporto termico per mezzo della spettroscopia Brillouin e Raman. (Italian)
    16 January 2022
    0 references

    Identifiers

    POIR.04.04.00-00-1E1A/16
    0 references