ERDF — CNRS — DYNAMITE — FONCT/INVEST (Q3680906)

From EU Knowledge Graph
Revision as of 08:06, 1 December 2021 by DG Regio (talk | contribs) (‎Created claim: summary (P836): Unter der Einwirkung eines intensiven statischen elektrischen Feldes kann die Oberfläche eines beliebigen Materials durch die Verdrängung seiner Bestandteile in Form von Ionen spontan seinen Zusammenhalt verlieren. Dieses Phänomen, das als Feldeffektverdampfung bezeichnet wird, ist das grundlegende physikalische Prinzip, das von der tomographischen Atomsonde, einer quantitativen Nanoanalysetechnik, ausgenutzt wird. Das Instrument, das zu den Stä...)
Jump to navigation Jump to search
Project Q3680906 in France
Language Label Description Also known as
English
ERDF — CNRS — DYNAMITE — FONCT/INVEST
Project Q3680906 in France

    Statements

    0 references
    108,951.10 Euro
    0 references
    231,963.49 Euro
    0 references
    46.97 percent
    0 references
    31 January 2020
    0 references
    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    0 references
    0 references

    49°12'0.97"N, 0°20'57.37"W
    0 references
    14052
    0 references
    Sous l'action d'un champ électrique statique intense, la surface de n'importe quel matériau peut perdre spontanément sa cohésion par l'expulsion de ses constituants sous forme d'ions. Ce phénomène appelé évaporation par effet de champ est le principe physique de base exploité par la sonde atomique tomographique, technique de nano-analyse quantitative. L'instrument qui est l'un des points fort du LABEX EMC3 comme méthode de caractérisation est utilisé notamment pour analyser finement les matériaux du nucléaire.En effet les matériaux de structure de l'industrie du nucléaire électrique vieillissent sous l'effet de la température, du bombardement par les neutrons produits par les réactions de fission et sous l'effet du milieu environnant. Du point de vue macroscopique, ce vieillissement se traduit généralement par une dégradation des propriétés d'usage (durcissement, fragilisation, sensibilisation à la corrosion...) pouvant limiter la durée de vie des réacteurs. Cette évolution des propriétés est due des modifications de la microstructure : agglomération de défauts ponctuels sous forme de boucles de dislocation ou cle cavités, ségrégation de solutés sur ces défauts étendus, aux joints de grains et interfaces, formation d'amas de solutés, précipitation de nouvelles phases... La sonde atomique reste aujourd'hui l'une des seules techniques d'analyse capables cle caractériser finement des hétérogénéités chimiques nanométriques au sein d'un matériau ainsi que de mesurer la composition chimique de la matrice dans des structures complexes telles que les aciers faiblement alliés. Elle est à ce titre incontournable dans l'étude du vieillissement des matériaux du nucléaire.Les données apportées par cette technique permettent d'identifier de comprendre les mécanismes du vieillissement thermique ou sous irradiation et, dans une approche multi-échelle, servent cie point de départ aux modèles prédisant l'évolution des propriétés macroscopiques. Il est donc essentiel d'identifier les limites cle cette technique et de déterminer dans quelle mesure les résultats fournis sont fidèles à la réalité. Par ailleurs, si la sonde atomique apporte de nombreuses informations sur les hétérogénéités chimiques, elle ne permet pas d'observer directement les défauts étendus. Cependant l'émergence de ces défauts en surface lors de l'évaporation par effet de champ peut modifier la surface de l'échantillon et influencer les reconstructions tridimensionnelles. Il est donc important de comprendre comment de tels défauts se comportent sous champ à la surface de l'échantillon.Le projet proposé s'intègre au processus SRI-SI, dont le vieillissement des matériaux sous irradiation constitue un point majeur des domaines de spécialisation en Normandie,Afin de comprendre les limites de l'instrument en termes de résolution spatiale et de fiabilité des mesures de composition, le porteur propose de développer une méthode théorique inédite multi-physique : l'application de la dynamique moléculaire sur la surface d'un matériau soumis à un champ électrique intense. La technique est mature pour donner une interprétation fine et physique des modifications de la surface sous l'effet du champ intense nécessaire à la technique. (French)
    0 references
    Under the action of an intense static electric field, the surface of any material can spontaneously lose its cohesion by the expulsion of its constituents in the form of ions. This phenomenon called field effect evaporation is the basic physical principle exploited by the tomographic atomic probe, a quantitative nanoanalysis technique. The instrument, which is one of the strong points of LABEX EMC3 as a method of characterisation, is used to finely analyse nuclear materials. Indeed, structural materials in the electrical nuclear industry age under the influence of temperature, neutron bombardment produced by fission reactions and under the influence of the surrounding environment. From a macroscopic point of view, this ageing usually results in a degradation of the use properties (hardening, weakening, corrosion awareness...) which can limit the life of the reactors. This evolution of properties is due to changes in the microstructure: agglomeration of spot defects in the form of dislocation loops or cavities, segregation of solutes on these extended defects, grain joints and interfaces, formation of clusters of solutes, precipitation of new phases... Today, the atomic probe remains one of the only analytical techniques capable of finely characterise nanometric chemical heterogeneities within a material and to measure the chemical composition of the matrix in complex structures such as low-alloy steels. It is therefore essential in the study of the aging of nuclear materials.The data provided by this technique makes it possible to identify the mechanisms of thermal aging or under irradiation and, in a multi-scale approach, serve as a starting point for models predicting the evolution of macroscopic properties. It is therefore essential to identify the limitations of this technique and to determine to what extent the results provided are true to reality. Moreover, while the atomic probe provides much information on chemical heterogeneities, it does not allow direct observation of extended defects. However, the emergence of these surface defects during field effect evaporation can alter the surface of the sample and influence three-dimensional reconstructions. It is therefore important to understand how such defects behave under field on the surface of the sample.The proposed project is part of the SRI-SI process, whose aging of materials under irradiation is a major point in the fields of specialisation in Normandy.In order to understand the limits of the instrument in terms of spatial resolution and reliability of composition measurements, the wearer proposes to develop a novel multi-physical theoretical method: the application of molecular dynamics on the surface of a material subjected to an intense electric field. The technique is mature to give a fine and physical interpretation of the changes in the surface under the effect of the intense field necessary for the technique. (English)
    18 November 2021
    0 references
    Unter der Einwirkung eines intensiven statischen elektrischen Feldes kann die Oberfläche eines beliebigen Materials durch die Verdrängung seiner Bestandteile in Form von Ionen spontan seinen Zusammenhalt verlieren. Dieses Phänomen, das als Feldeffektverdampfung bezeichnet wird, ist das grundlegende physikalische Prinzip, das von der tomographischen Atomsonde, einer quantitativen Nanoanalysetechnik, ausgenutzt wird. Das Instrument, das zu den Stärken des LABEX EMC3 als Charakterisierungsmethode gehört, wird insbesondere zur feinen Analyse von Kernmaterial eingesetzt. Denn die Strukturmaterialien der Elektronuklearindustrie altern unter dem Einfluss der Temperatur, der Bombardierung mit Neutronen, die durch Spaltreaktionen erzeugt werden, und unter dem Einfluss der Umgebung. Aus makroskopischer Sicht führt diese Alterung in der Regel zu einer Verschlechterung der Gebrauchseigenschaften (Verhärtung, Versprödung, Korrosionsbewusstsein usw.), die die Lebensdauer der Reaktoren begrenzen kann. Diese Entwicklung der Eigenschaften ist auf Veränderungen der Mikrostruktur zurückzuführen: Agglomeration von punktuellen Defekten in Form von Dislokationsschleifen oder Hohlräumen, Seigerung von Löslichkeiten auf diesen ausgedehnten Defekten, Kornfugen und Schnittstellen, Bildung von Löslichkeiten, Ausfällung neuer Phasen... Die Atomsonde bleibt heute eine der einzigen Analysetechniken, die in der Lage sind, die chemischen Nanogenitäten innerhalb eines Materials fein zu charakterisieren und die chemische Zusammensetzung der Matrix in komplexen Strukturen wie schwach legierten Stählen zu messen. Sie ist daher unumgänglich für die Untersuchung der Alterung von Kernmaterialien.Die durch diese Technik bereitgestellten Daten ermöglichen es, die Mechanismen der thermischen Alterung oder unter Bestrahlung zu verstehen, und bei einem Multi-Skala-Ansatz dienen hier die Modelle, die die Entwicklung makroskopischer Eigenschaften voraussagen. Es ist daher wichtig, die Grenzen dieser Technik zu ermitteln und zu bestimmen, inwieweit die gelieferten Ergebnisse der Realität entsprechen. Darüber hinaus liefert die Atomsonde zwar zahlreiche Informationen über chemische Heterogenitäten, sie erlaubt es jedoch nicht, ausgedehnte Defekte direkt zu beobachten. Die Entstehung dieser Oberflächenfehler während der Feldeffektverdampfung kann jedoch die Oberfläche der Probe verändern und die dreidimensionalen Rekonstruktionen beeinflussen. Daher ist es wichtig zu verstehen, wie sich solche Defekte auf der Oberfläche der Probe verhalten.Das vorgeschlagene Projekt ist Teil des SRI-SI-Prozesses, dessen Alterung unter Bestrahlung ein wichtiger Punkt der Spezialisierungsbereiche in der Normandie ist.Um die Grenzen des Instruments in Bezug auf die räumliche Auflösung und die Zuverlässigkeit der Kompositionsmessungen zu verstehen, schlägt der Träger vor, eine neuartige, multiphysikalische theoretische Methode zu entwickeln: die Anwendung der molekularen Dynamik auf die Oberfläche eines Materials, das einem intensiven elektrischen Feld ausgesetzt ist. Die Technik ist reif, um eine feine und physische Interpretation der Oberflächenveränderungen unter dem Einfluss des intensiven Feldes zu geben, das für die Technik erforderlich ist. (German)
    1 December 2021
    0 references

    Identifiers

    17P04845
    0 references