No label defined (Q3712197)

From EU Knowledge Graph
Revision as of 14:00, 22 November 2021 by DG Regio (talk | contribs) (‎Created claim: summary (P836): In the last 10 years part of the material science community of Region Grand Est has moved towards the growth, patterning and characterisation of multi-material systems with a control at the Nanometer scale and physics understanding at the sub-picosecond time scale. This development is due to the critical length and time scales of physical phenomena that occur at those scales. Mastering the properties of nanomaterials, and their integration withi...)
Jump to navigation Jump to search
Project Q3712197 in France
Language Label Description Also known as
English
No label defined
Project Q3712197 in France

    Statements

    0 references
    56,000.0 Euro
    0 references
    140,000.0 Euro
    0 references
    40.0 percent
    0 references
    1 January 2019
    0 references
    31 December 2022
    0 references
    Centre National de la Recherche Scientifique
    0 references
    0 references
    In the last 10 years part of the material science community of Region Grand Est has moved toward the growth, patterning and characterization of multi-material systems with a control at the nanometer scale and physics understanding at the sub-picosecond time scale. This development is due to the critical length and time scales of physical phenomena that occur at those scales. Mastering the properties of nanomaterials, and their integration within nanodevices, at these extreme spatio-temporal scales requires an integrated, interdisciplinary, fundamental research initiative. In this context, our ambition is to create a platform available to support scientific excellence as well as industrial partners, in order to develop and characterize nanomaterials/nanodevices for the next generation of Terahertz device operation. A long and fruitful collaboration between 3 international units (IJL Nancy, IPCMS Strasbourg and IS2M Mulhouse) has brought the idea of gathering complementary skills and equipment through the creation of a unique technological platform, combining innovative technologies in the field of manufacturing, but also the characterization of nanomaterials. This project, called « TéraHertz Nanotechnologies » (NanoTeraH), is based on the unique tools available in the greater region, including the TUBE Davm Equipex for the elaboration of nanomaterials, the Equipex UNION "Ultrafast optics, NanophotonIcs, plasmONics" and the Labex NIE. (French)
    0 references
    In the last 10 years part of the material science community of Region Grand Est has moved towards the growth, patterning and characterisation of multi-material systems with a control at the Nanometer scale and physics understanding at the sub-picosecond time scale. This development is due to the critical length and time scales of physical phenomena that occur at those scales. Mastering the properties of nanomaterials, and their integration within nanodevices, at these extreme spatio-temporal scales requires an integrated, interdisciplinary, fundamental research initiative. In this context, our ambition is to create a platform available to support scientific excellence as well as industrial partners, in order to develop and characterise nanomaterials/nanodevices for the next generation of Terahertz device operation. A long and fruitful collaboration between 3 international units (IJL Nancy, IPCMS Strasbourg and IS2M Mulhouse) has brought the idea of gathering complementary skills and equipment through the creation of a unique technological platform, combining innovative technologies in the field of manufacturing, but also the characterisation of nanomaterials. This project, called “terrahertz Nanotechnologies” (NanoTeraH), is based on the unique tools available in the greater region, including the TUBE Davm Equipex for the elaboration of nanomaterials, the Equipex UNION “Ultrafast optics, Nanophotonics, Plasmonics” and the Labex NIE. (English)
    22 November 2021
    0 references

    Identifiers

    AL0024594
    0 references