A next-generation worth wide quantum sensor network with horizontal Atomic locks (Q84283)
Jump to navigation
Jump to search
Project in Poland financed by DG Regio
Language | Label | Description | Also known as |
---|---|---|---|
English | A next-generation worth wide quantum sensor network with horizontal Atomic locks |
Project in Poland financed by DG Regio |
Statements
3,180,310.0 zloty
0 references
3,180,310.0 zloty
0 references
100.0 percent
0 references
1 April 2018
0 references
31 March 2021
0 references
UNIWERSYTET MIKOŁAJA KOPERNIKA W TORUNIU
0 references
The sensor network made of optical atomic clocks and methods developed within this project will have spin-off benefits in a plethora of applications, including natural resource detection, navigation, oceanography, gravitational wave detection and astronomy. In particular, we have recently demonstrated that a single optical atomic clock is sensitive to variations in the fine-structure constant. We will establish an Earth-scale observatory for detecting dark matter in the form of topological defects and oscillating scalar fields and test existing hypotheses of new fields beyond the Standard Model at an unprecedented level of accuracy. We will also investigate general relativistic justification of the dark matter hypothesis. Our detection thresholds will be achieved by applying our new approach to synchronize already existing optical atomic clocks. The clocks within the proposed global network do not have to be directly linked via dedicated fibre links but only via an internet cloud. (Polish)
0 references
The sensor network made of optical atomic clocks and methods developed within this project will have spin-off benefits in a plethora of applications, including natural resource detection, navigation, Oceanography, gravitational wave detection and astronomy. In particular, we have recently demonstrated that a single optical atomic clock is sensitive to variations in the fine-structure constant. We will establish an Earth-scale observatory for detecting dark matter in the form of topological defects and oscillating scalar fields and test existing hypotheses of new fields beyond the Standard Model at an unprecedented level of accuracy. We will also investigate general relativistic justification of the dark matter hypothesis. Our detection thresholds will be achieved by applying our new approach to synchronise already existing optical atomic clocks. The clocks within the proposed global network do not have to be directly linked via dedicated fibre links but only via an internet cloud. (English)
14 October 2020
0 references
Identifiers
POIR.04.04.00-00-40F8/17
0 references