Radiopure materials and technologies for science and society (Q84231)
Jump to navigation
Jump to search
Project in Poland financed by DG Regio
Language | Label | Description | Also known as |
---|---|---|---|
English | Radiopure materials and technologies for science and society |
Project in Poland financed by DG Regio |
Statements
4,013,804.0 zloty
0 references
4,013,804.0 zloty
0 references
100.0 percent
0 references
1 February 2017
0 references
31 January 2021
0 references
UNIWERSYTET JAGIELLOŃSKI
0 references
For physics frontier experiments, designed to investigate fundamental problems of the Standard Model like non-conservation of lepton number (through neutrino-less double beta decay) or existence of dark matter particles, the expected signals are very week (~1 ev/year). The detectors need to have large active masses and simultaneously the background rates, caused by natural radioactivity, must be pushed down to extremely low levels. Comprehensive research program on the background reduction techniques is therefore proposed. It is based on world-wide unique expertise of the PI and, if completed, it will allow for better understanding of the origin of the most relevant isotopes, and for easier, faster and more confident selection of materials and procedures for applications with the highest radio-purity demands (single-atom level). Finally, the presented project will have crucial impact on future large-scale (ton-scale) experiments in the field of nuclear and astro-particle physics. (Polish)
0 references
For physics frontier experiments, designed to investigate fundamental problems of the Standard Model like non-conservation of lepton number (through neutrino-less double beta decay) or existence of dark matter particles, the expected signals are very week (~1 ev/year). The detectors need to have large active masses and simultaneously the background rates, caused by natural Radioactivity, must be pushed down to extremely low levels. Comprehensive research program on the background reduction techniques is therefore proposed. It is based on world-wide unique expertise of the PI and, if completed, it will allow for better understanding of the origin of the most relevant isotopes, and for easier, faster and more confident selection of materials and procedures for applications with the highest radio-purity demands (single-atom level). Finally, the presented project will have a crucial impact on the future large-scale (ton-scale) experiments in the field of nuclear and astro-particle physics. (English)
14 October 2020
0 references
Identifiers
POIR.04.04.00-00-2FFF/16
0 references