DEVELOPMENT OF PORT INFRASTRUCTURE CONTROL AND MANAGEMENT PLATFORM THROUGH DEEP CONVOLUTIONAL NEURAL NETWORKS FOR ARTIFICIAL VISION (Q3250664)

From EU Knowledge Graph
Revision as of 17:50, 21 October 2021 by DG Regio (talk | contribs) (‎Changed an Item)
Jump to navigation Jump to search
Project Q3250664 in Spain
Language Label Description Also known as
English
DEVELOPMENT OF PORT INFRASTRUCTURE CONTROL AND MANAGEMENT PLATFORM THROUGH DEEP CONVOLUTIONAL NEURAL NETWORKS FOR ARTIFICIAL VISION
Project Q3250664 in Spain

    Statements

    0 references
    71,113.54 Euro
    0 references
    142,227.09 Euro
    0 references
    50.0 percent
    0 references
    27 March 2018
    0 references
    30 June 2019
    0 references
    ORBITA INGENIERIA, S.L.
    0 references
    0 references

    39°22'3.76"N, 0°26'40.81"W
    0 references
    46015
    0 references
    EL OBJETIVO DEL PROYECTO ES LA INVESTIGACIÓN Y DESARROLLO DE UNA SOLUCIÓN INTEGRAL PARA EL CONTROL Y GESTIÓN DE INFRAESTRUCTURAS PORTUARIAS, CON CAPACIDAD DE TRABAJAR CON MÓDULOS INDIVIDUALES, BASADOS ÉSTOS EN DETECCIÓN Y PREVENCIÓN MEDIANTE VISIÓN ARTIFICIAL Y APRENDIZAJE DEEP LEARNING CON ARQUITECTURA DE REDES NEURONALES PROFUNDAS CONVOLUCIONALES. CADA UNO DE LOS MÓDULOS A DESARROLLAR SE CENTRARÁ Y ESPECIALIZARÁ EN NODOS LOGÍSTICOS DIFERENTES DENTRO DE LA ZONA PORTUARIA. DE ESTA FORMA, EL SISTEMA COMPLETO SERÁ CAPAZ DE ADAPTARSE A LAS NECESIDADES Y REQUISITOS LOGÍSTICOS DE CADA PUERTO, INTEGRANDO ÚNICAMENTE LOS MÓDULOS NECESARIOS PARA CADA ESCENARIO. EN ESTE SENTIDO, LA SOLUCIÓN INTEGRAL OFRECIDA POR LA PLATAFORMA MODULAR SERÁ CAPAZ DE GESTIONAR DE FORMA AUTÓNOMA LOS NODOS DE ENTRADA Y SALIDA DE CAMIONES Y PERSONAS DE LA ZONA PORTUARIA, LA ESTIBA (CARGA Y DESCARGA) DE CONTENEDOR DE BARCO MEDIANTE LA GRÚA, EL TRÁFICO DE LOS VEHÍCULOS EN LA ZONA PORTUARIA Y EL CONTROL CADA CONTENEDOR (Spanish)
    0 references
    THE AIM OF THE PROJECT IS THE RESEARCH AND DEVELOPMENT OF A COMPREHENSIVE SOLUTION FOR THE CONTROL AND MANAGEMENT OF PORT INFRASTRUCTURE, CAPABLE OF WORKING WITH INDIVIDUAL MODULES, BASED THESE ON DETECTION AND PREVENTION THROUGH ARTIFICIAL VISION AND LEARNING DEEP LEARNING ARCHITECTED DEEP NEURAL NETWORKS CONVOLUTIONAL . EACH OF THE MODULES TO BE DEVELOPED WILL FOCUS AND SPECIALIZE IN DIFFERENT LOGISTIC NODES WITHIN THE PORT AREA. THUS, THE ENTIRE SYSTEM WILL BE ABLE TO ADAPT TO THE NEEDS AND REQUIREMENTS OF EACH PORT LOGISTICS, INTEGRATING ONLY THE MODULES REQUIRED FOR EACH SCENARIO. IN THIS SENSE, THE COMPREHENSIVE SOLUTION OFFERED BY THE MODULAR PLATFORM WILL BE ABLE TO MANAGE AUTONOMOUSLY NODES AND OUT OF TRUCKS AND PEOPLE IN THE PORT AREA, STEVEDORING (LOADING AND UNLOADING) CONTAINER SHIP BY CRANE, VEHICLE TRAFFIC IN THE PORT AREA AND CONTROL SHIP EACH CONTAINER BASED ON ITS IDENTIFICATION CODE. DEEP INTEGRATION MECHANISMS LEARNING, BASED ON CONVOLUTIONAL NEURAL NETWORK, ARTIFIC (English)
    0 references
    Alcàsser
    0 references

    Identifiers

    20F01020101U_IVCI00000IDTA8100
    0 references