Innovative technology of cold UltraFast photo-magnetic recording and novel approach to UltraFast opto-spintronics (Q84286)
Jump to navigation
Jump to search
Project Q84286 in Poland
Language | Label | Description | Also known as |
---|---|---|---|
English | Innovative technology of cold UltraFast photo-magnetic recording and novel approach to UltraFast opto-spintronics |
Project Q84286 in Poland |
Statements
3,300,000.0 zloty
0 references
3,300,000.0 zloty
0 references
100.0 percent
0 references
1 May 2018
0 references
30 April 2021
0 references
UNIWERSYTET W BIAŁYMSTOKU
0 references
Ultrafast all-optical control of magnetism using femtosecond and picosecond laser pulses is an intriguing and rapidly growing fundamental research area the outcome of which may have a high impact on the future technology. Project presents the new approach to concept of the novel technology of cold ultrafast photo-magnetic recording. The research programme is focusing on the advantages of this approach to magnetic memory which has the fastest switching speed and the exceptionally low energy consumption. We expect that the nonthermal photomagnetic switching based on an optical manipulation of spin-orbit interactions with low electrical field bias open up a plethora of opportunities for design and development of hybrid materials and new approach to ultrafast opto-spintronics. TEAM project will allow younger scientists be involved in advanced fundamental research and development of the data storage technology beyond state-of-the-art. (Polish)
0 references
UltraFast all-optical control of magnetism using Femtosecond and picosecond laser pulses is an intriguing and rapidly growing fundamental research area the outcome of which may have a high impact on the future technology. Project presents the new approach to concept of the novel technology of cold UltraFast photo-magnetic recording. The research programme is focusing on the advantages of this approach to magnetic memory which has the fastest switching speed and the exceptionally low energy consumption. We expect that the nonthermal photomagnetic switching based on an optical manipulation of spin-orbit interactions with low electrical field bias open up a plethora of opportunities for design and development of hybrid materials and new approach to UltraFast opto-spintronics. Team project will allow younger scientists be involved in advanced fundamental research and development of the data storage technology beyond state-of-the-art. (English)
14 October 2020
0 references
Identifiers
POIR.04.04.00-00-413C/17
0 references