Innovative system for automated monitoring of critical electricity lines (Q80222)

From EU Knowledge Graph
Revision as of 11:44, 14 October 2020 by DG Regio (talk | contribs) (‎Created claim: summary (P836): The project consists of creating a system to monitor modernisation work on the existing critical infrastructure in the field of electricity grids. Reporting will be based on data collected from drone raids. The accuracy of the collected data will be acceptable at a level of approx. 1 centimetres for larger components such as foundations, wires, hooks. The mere power of the data by drones will be performed using photogrammetry and/or using a lase...)
Jump to navigation Jump to search
Project in Poland financed by DG Regio
Language Label Description Also known as
English
Innovative system for automated monitoring of critical electricity lines
Project in Poland financed by DG Regio

    Statements

    Q2524466 (Deleted Item)
    0 references
    0 references
    8,682,391.89 zloty
    0 references
    2,083,774.05 Euro
    13 January 2020
    0 references
    12,402,373.75 zloty
    0 references
    2,976,569.70 Euro
    13 January 2020
    0 references
    70.01 percent
    0 references
    1 February 2019
    0 references
    31 January 2022
    0 references
    ENPROM SPÓŁKA Z OGRANICZONA ODPOWIEDZIALNOŚCIĄ
    0 references
    0 references

    50°8'6.0"N, 19°37'55.2"E
    0 references
    Projekt polega na stworzeniu systemu służącego do monitorowania prac modernizacyjnych na istniejącej infrastrukturze krytycznej w zakresie sieci elektroenergetycznych. Raportowanie będzie oparte na danych zbieranych z nalotów dronami. Dokładność zbieranych danych będzie dopuszczalna na poziomie ok. 1 centymetra dla większych elementów, takich jak fundamenty, przewody, haki. Samo zasilanie danych przez drony będzie realizowane za pomocą fotogrametrii i/lub przy użyciu skanera laserowego (obejmuje multiskanowanie). W wyniku prac badawczych zostanie opracowany system automatycznego pozycjonowania się i robienia zdjęć przez drony. Zebrane dane będą poddawane obróbce cyfrowej i analitycznej z wykorzystaniem algorytmów sztucznej inteligencji i uczenia maszynowego (ang.: machine learning, ML), takich jak np. systemy regułowe i sieci neuronowe ze splotem (ang.: convolutional neural networks, CNN). Rozwiąznie umożliwi zwiększenie niezawodności (bezpieczniejsza i mniej awaryjna praca systemu elektroenergetycznego), przewidywanie na bazie analizy wpływu rozwiązań projektowych na ich żywotność (badanie starzenia się poszczególnych elementów linii), a także szybsze usuwanie awarii (gromadzenie danych jakościowych na temat istniejących linii) Przetwarzane dane pozwolą oszacować pracochłonność oraz postęp prac, w tym identyfikację poszczególnych obiektów. Algorytm wykorzysta mechanizmy reguły uczenia się sieci, co przełoży się na klasyfikację identyfikowanych obiektów różniących się między sobą w zdefiniowanym zakresie odchyłu od obiektu wzorcowego. Przeznaczenie_pomocy_publicznej: art. 25 rozporządzenia KE nr 651/2014 z dnia 17 czerwca 2014 r. uznające niektóre rodzaje pomocy za zgodne z rynkiem wewnętrznym w stosowaniu art. 107 i 108 Traktatu (Dz. Urz. UE L 187/1 z 26.06.2014). (Polish)
    0 references
    The project consists of creating a system to monitor modernisation work on the existing critical infrastructure in the field of electricity grids. Reporting will be based on data collected from drone raids. The accuracy of the collected data will be acceptable at a level of approx. 1 centimetres for larger components such as foundations, wires, hooks. The mere power of the data by drones will be performed using photogrammetry and/or using a laser scanner (including multi-scan). As a result of the research, a system of automatic positioning and photo-taking by drones will be developed. The data collected will be processed digitally and analytically using artificial intelligence and machine learning algorithms. machine learning (ML) such as rule systems and neural networks with plexus. “Convolutional Neural Networks”. The solution will make it possible to increase reliability (safer and less emergency operation of the power system), predicting on the basis of an analysis of the impact of design solutions on their service life (testing the ageing of individual components of the line), as well as faster resolution of failures (acquiring quality data on existing lines) Processed data will allow to estimate labor intensity and progress of work, including identification of individual objects. The algorithm will use the mechanisms of the network learning rule, which translates into a classification of identified objects that differ from one another within a defined range of deviation from the reference object. Purpose of public aid: Article 25 of EC Regulation No 651/2014 of 17 June 2014 declaring certain types of aid compatible with the internal market in the application of Articles 107 and 108 of the Treaty (OJ L. I'm sorry. EU L 187/1 of 26.06.2014). (English)
    14 October 2020
    0 references

    Identifiers

    POIR.01.02.00-00-0307/17
    0 references