DEVELOPMENT OF A CLINICAL IMAGE ANALYSIS MODEL AIMING TO SUPPORT MEDICAL DIAGNOSIS DURING COVID-19 PANDEMIC (Q4225702)

From EU Knowledge Graph
Revision as of 19:25, 1 February 2022 by DG Regio (talk | contribs) (‎Changed label, description and/or aliases in en, and other parts: Adding English translations)
Jump to navigation Jump to search
Project Q4225702 in Italy
Language Label Description Also known as
English
DEVELOPMENT OF A CLINICAL IMAGE ANALYSIS MODEL AIMING TO SUPPORT MEDICAL DIAGNOSIS DURING COVID-19 PANDEMIC
Project Q4225702 in Italy

    Statements

    0 references
    230,013.04 Euro
    0 references
    460,026.09 Euro
    0 references
    50.0 percent
    0 references
    MIKAMAI SRL
    0 references
    LOOPTRIBE S.R.L.
    0 references
    CENTRO DI RICERCA, SVILUPPO E STUDI SUPERIORI IN SARDEGNA SOCIETA' A RESPONSABILITA' LIMITATA ED IN FORMA ABBREVIATA CRS4 S.R.L.
    0 references
    ISTITUTO AUXOLOGICO ITALIANO
    0 references
    ASST FATEBENEFRATELLI SACCO
    0 references
    Q4225700 (Deleted Item)
    0 references
    0 references
    Q4225701 (Deleted Item)
    0 references
    0 references
    0 references
    IL PROGETTO HA COME OBIETTIVO DI PREDISPORRE UN SISTEMA DI STUDIO BASATO SULL INTELLIGENZA ARTIFICIALE (AI) IN GRADO DI ANALIZZARE LE IMMAGINI ECOCARDIOGRAFICHE, LE ECOGRAFIE POLMONARI E LE IMMAGINI RADIOGRAFICHE POLMONARI DI PAZIENTI MAGGIORENNI (COVID-19 NEGATIVI, COVID-19 POSITIVI E PAZIENTI CON ARDS-COVID-19 RICOVERATI NEI REPARTI DEGLI OSPEDALI DEL PARTENARIATO), UNITAMENTE ALLE INFORMAZIONI DI REFERTO, COSì DA COSTRUIRE UN DATASET UTILE ALL ADDESTRAMENTO DEL MODELLO DI MACHINE LEARNING FINO A SELEZIONARE IL MODELLO IN GRADO DI FORNIRE LA PREVISIONE PIù ACCURATA DI DIAGNOSI. TALE MODELLO PRODURRà UNA CLASSIFICAZIONE BINARIA DELLA PROBABILITà DI DIAGNOSI DI NON-PATOLOGIA DA COVID-19 OPPURE DI PATOLOGIA DA COVID-19 PER SUPPORTARE I CLINICI NELLA DIAGNOSI - IN TERMINI DI PRECOCITà , MINORE DIFFICOLTà NELLA DIAGNOSI DIFFERENZIALE,STRATIFICAZIONE DEL RISCHIO E INIZIO TEMPESTIVO DELLA TERAPIA OTTIMALE- E NEL FOLLOW UP (IN TERMINI DI PREDITTORI PRECOCI DI DECORSO CLINICO SFAVOREVO (Italian)
    0 references
    THE PROJECT AIMS TO SET UP AN ARTIFICIAL INTELLIGENCE-BASED STUDY SYSTEM (AI) ABLE TO ANALYSE ECHOCARDIOGRAPHIC IMAGES, PULMONARY ULTRASOUND AND X-RAY IMAGES OF ADULT PATIENTS (COVID-19 NEGATIVE, COVID-19 POSITIVE AND ARDS-COVID-19 PATIENTS HOSPITALISED IN THE PARTNERSHIP HOSPITALS), TOGETHER WITH THE REPORTING INFORMATION, SO AS TO BUILD A DATASET USEFUL FOR THE TRAINING OF THE MACHINE LEARNING MODEL UNTIL SELECTING THE MODEL CAPABLE OF PROVIDING THE MOST ACCURATE PREDICTION OF DIAGNOSIS. THIS MODEL WILL PRODUCE A BINARY CLASSIFICATION OF THE PROBABILITY OF DIAGNOSIS OF NON-PATHOLOGY FROM COVID-19 OR COVID-19 PATHOLOGY TO SUPPORT CLINICIANS IN DIAGNOSIS — IN TERMS OF EARLYNESS, LESS DIFFICULTY IN DIFFERENTIAL DIAGNOSIS, RISK STRATIFICATION AND EARLY INITIATION OF OTTIMAL THERAPY- AND FOLLOW-UP (IN TERMS OF EARLY PREDICTORS OF ADVERSE CLINICAL COURSE (English)
    1 February 2022
    0 references
    MILANO
    0 references
    BRESCIA
    0 references

    Identifiers