A next-generation worldwide quantum sensor network with optical atomic clocks (Q84283)
Jump to navigation
Jump to search
Project Q84283 in Poland
Language | Label | Description | Also known as |
---|---|---|---|
English | A next-generation worldwide quantum sensor network with optical atomic clocks |
Project Q84283 in Poland |
Statements
3,180,310.0 zloty
0 references
3,180,310.0 zloty
0 references
100.0 percent
0 references
1 April 2018
0 references
31 March 2021
0 references
UNIWERSYTET MIKOŁAJA KOPERNIKA W TORUNIU
0 references
The sensor network made of optical atomic clocks and methods developed within this project will have spin-off benefits in a plethora of applications, including natural resource detection, navigation, oceanography, gravitational wave detection and astronomy. In particular, we have recently demonstrated that a single optical atomic clock is sensitive to variations in the fine-structure constant. We will establish an Earth-scale observatory for detecting dark matter in the form of topological defects and oscillating scalar fields and test existing hypotheses of new fields beyond the Standard Model at an unprecedented level of accuracy. We will also investigate general relativistic justification of the dark matter hypothesis. Our detection thresholds will be achieved by applying our new approach to synchronize already existing optical atomic clocks. The clocks within the proposed global network do not have to be directly linked via dedicated fibre links but only via an internet cloud. (Polish)
0 references
The sensor network made of optical atomic clocks and methods developed within this project will have spin-off benefits in a plethora of applications, including natural resource detection, navigation, Oceanography, gravitational wave detection and astronomy. In particular, we have recently demonstrated that a single optical atomic clock is sensitive to variations in the fine-structure constant. We will establish an Earth-scale observatory for detecting dark matter in the form of topological defects and oscillating scalar fields and test existing hypotheses of new fields beyond the Standard Model at an unprecedented level of accuracy. We will also investigate general relativistic justification of the dark matter hypothesis. Our detection thresholds will be achieved by applying our new approach to synchronise already existing optical atomic clocks. The clocks within the proposed global network do not have to be directly linked via dedicated fibre links but only via an internet cloud. (English)
14 October 2020
0 references
Le réseau de capteurs constitué d’horloges atomiques optiques et de méthodes développées dans le cadre de ce projet aura des retombées bénéfiques dans une pléthore d’applications, y compris la détection des ressources naturelles, la navigation, l’océanographie, la détection des ondes gravitationnelles et l’astronomie. En particulier, nous avons récemment démontré qu’une seule horloge atomique optique est sensible aux variations de la constante de structure fine. Nous établirons un observatoire à l’échelle de la Terre pour détecter la matière noire sous la forme de défauts topologiques et de champs scalaires oscillants et testerons les hypothèses existantes de nouveaux champs au-delà du modèle standard à un niveau de précision sans précédent. Nous examinerons également la justification relativiste générale de l’hypothèse de la matière noire. Nos seuils de détection seront atteints en appliquant notre nouvelle approche pour synchroniser les horloges atomiques optiques déjà existantes. Les horloges du réseau mondial proposé ne doivent pas être directement reliées par des liaisons en fibre optique dédiées, mais uniquement via un nuage internet. (French)
30 November 2021
0 references
Identifiers
POIR.04.04.00-00-40F8/17
0 references