No label defined (Q3150823)
Jump to navigation
Jump to search
Project Q3150823 in Spain
Language | Label | Description | Also known as |
---|---|---|---|
English | No label defined |
Project Q3150823 in Spain |
Statements
11,313.5 Euro
0 references
22,627.0 Euro
0 references
50.0 percent
0 references
30 December 2016
0 references
31 December 2020
0 references
UNIVERSIDAD POLITECNICA DE CATALUÑA
0 references
08019
0 references
HACE AÑOS QUE NUESTRO EQUIPO DE INVESTIGACION ESTUDIA PROBLEMAS ANALITICOS DE LA TERMOME-CANICA DESDE UNA PERSPECTIVA MATEMATICA. EL ESTUDIO DE DICHOS PROBLEMAS SE TRADUCE USUALMENTE EN UN ANALISIS CUALITATIVO DE ECUACIONES O SISTEMAS DE ECUACIONES EN DERIVADAS PARCIALES. CONCRETAMENTE, HEMOS ESTUDIADO PROPIEDADES COMO LA EXISTENCIA DE SOLUCIONES, SU UNICIDAD, SU REGULARIDAD Y SU COMPORTAMIENTO ASINTOTICO, TANTO ESPACIAL COMO TEMPORAL, PARA ECUACIONES Y SISTEMAS DE ECUACIONES QUE DESCRIBEN EL COMPORTAMIENTO DE MATERIALES ELASTICOS. TAMBIEN SE HAN ANALIZADO LOS EFECTOS DEL CALOR SOBRE ESTOS MATERIALES. PARA DES-CRIBIR LA CONDUCCION DEL CALOR SE HAN USADO LA TEORIA CLASICA DE FOURIER Y TAMBIEN OTRAS TEORIAS MAS RECIENTES, DENOMINADAS GENERALIZADAS._x000D_ _x000D_ EL PRINCIPAL OBJETIVO DEL PROYECTO QUE AQUI PRESENTAMOS ES CONTINUAR NUESTROS ESTUDIOS DE PROBLEMAS SURGIDOS EN LA TERMOMECANICA O EN LA INGENIERIA CON LAS HERRAMIENTAS Y EL RIGOR DE LA MATEMATICA._x000D_ _x000D_ LA CONSTANTE EVOLUCION DE LOS MODELOS TERMOMECANICOS PROVOCA TAMBIEN UNA EVOLUCION EN LOS MODELOS MATEMATICOS QUE SE PROPONEN PARA DESCRIBIRLOS. SURGEN ASI NUEVOS SISTEMAS DE ECUACIONES EN DERIVADAS PARCIALES QUE SON CADA VEZ MAS COMPLEJOS. NOS PROPONEMOS ANA-LIZAR LAS PROPIEDADES CUALITATIVAS DE LAS SOLUCIONES DE ESTOS SISTEMAS. ESTE ANALISIS NO ES FACIL PUESTO QUE LAS DIFICULTADES QUE APARECEN EN LOS NUEVOS PROBLEMAS NECESITAN ASIMISMO DE NUEVAS TECNICAS, NUEVOS ARGUMENTOS Y METODOLOGIAS DIFERENTES A LAS YA CONOCIDAS._x000D_ _x000D_ TAMBIEN ES IMPORTANTE PLANTEARSE SI LOS RESULTADOS TEORICOS QUE SE OBTIENEN SE AJUSTAN A LOS RESULTADOS EMPIRICOS PARA DECIDIR SI LOS MODELOS MATEMATICOS PROPUESTOS SON UTILES O DEBEN DE SER REFINADOS O SUBSTITUIDOS POR MODELOS ALTERNATIVOS. LA BUSQUEDA DE ESTOS MODELOS ALTERNATIVOS ES OTRO DE LOS OBJETIVOS DEL PROYECTO._x000D_ _x000D_ LOS ESTUDIOS QUE VENIMOS REALIZANDO SE CENTRAN PRINCIPALMENTE EN LOS MATERIALES ELASTICOS CLASICOS Y NO CLASICOS CON CONDUCCION DEL CALOR CLASICA Y NO CLASICA. EN ESTE PROYECTO QUE-REMOS ESTUDIAR LOS MATERIALES DE GRADIENTE DE DEFORMACION (TAMBIEN CONOCIDOS COMO NO-SIMPLES), LOS PORO-ELASTICOS, LAS MEZCLAS DE MATERIALES Y LOS MATERIALES CON MICRO-ESTRUCTURA. LAS TEORIAS DE CONDUCCION DEL CALOR A CONSIDERAR SERAN, ENTRE OTRAS, LAS TEORIAS CON DOS TEM-PERATURAS, LA DE CATTANEO-MAXWELL, LA DE TZOU O LAS DE GREEN-NAGHDI E, INCLUSO, AQUELLAS EN LAS QUE SE CONSIDERAN SIMULTANEAMENTE LAS DOS TEMPERATURAS CON LAS PROPUESTAS DE TZOU O DE GREEN-NAGHDI._x000D_ _x000D_ NUESTRA INVESTIGACION PRETENDE SER INTERDISCIPLINARIA PARA APORTAR CONOCIMIENTO TANTO A LA MATEMATICA COMO A LA TERMOMECANICA. PRETENDEMOS CONTESTAR PREGUNTAS FISICAS MEDIANTE HERRAMIENTAS MATEMATICAS. ESTAS PREGUNTAS NOS LLEVARAN A PROPONERNOS ORIGINALES Y ESTIMU-LANTES CUESTIONES MATEMATICAS. LA HISTORIA DE LA MATEMATICA ESTA REPLETA DE EJEMPLOS QUE MUESTRAN COMO LA FISICA HA SIDO UNA FUENTE CONSTANTE DE PROBLEMAS MATEMATICOS. ESTA INTER-RELACION ENTRE LAS DOS DISCIPLINAS HA LLEVADO AL ENRIQUECIMIENTO Y A LA EVOLUCION DE AMBAS. LA PRETENSION DE NUESTRO PROYECTO ES CONTINUAR EN ESA LINEA. _x000D_ FINALMENTE, CON ESTE PROYECTO QUEREMOS PROSEGUIR LOS ESTUDIOS DESARROLLADOS EN SEIS PRO-YECTOS ANTERIORES (QUE SE CITAN A CONTINUACION). ES IMPORTANTE SEÑALAR QUE LOS PROBLEMAS QUE HEMOS ANALIZADO Y RESUELTO EN ESOS PROYECTOS SON DIFERENTES A LOS QUE DESEAMOS ANALIZAR AHORA. EL AVANCE CONTINUADO EN NUESTROS ESTUDIOS PERMITE PLANTEARNOS CUESTIONES MA-TEMATICAS CADA VEZ MAS COMPLEJAS. (Spanish)
0 references
OUR RESEARCH TEAM HAS BEEN STUDYING ANALYTICAL PROBLEMS OF TERMOME-CANICA FOR YEARS FROM A MATHEMATICAL PERSPECTIVE. THE STUDY OF THESE PROBLEMS USUALLY RESULTS IN A QUALITATIVE ANALYSIS OF EQUATIONS OR SYSTEMS OF PARTIAL DERIVATIVE EQUATIONS. SPECIFICALLY, WE HAVE STUDIED PROPERTIES SUCH AS THE EXISTENCE OF SOLUTIONS, THEIR UNIQUENESS, THEIR REGULARITY AND THEIR ASYMPTOTIC BEHAVIOR, BOTH SPATIAL AND TEMPORAL, FOR EQUATIONS AND SYSTEMS OF EQUATIONS THAT DESCRIBE THE BEHAVIOR OF ELASTIC MATERIALS. THE EFFECTS OF HEAT ON THESE MATERIALS HAVE ALSO BEEN ANALYSED. In order to de-write the condition of the value we have used the classic theory of FOURIER and also other more recent, denominated GENERALised TEORIAS._x000D_ _x000D_ THE PRINCIPLE OBJECTIVE OF THE PROJECT THAT WHERE IS CONTINUED TO OUR STUDIES from products arising in the thermomecanica or in the English with the tools and the root of the MATEMATICA._x000D_ _x000D_ the CONSTANT EVOLUCTION OF THEERMOMECANIC MODELS PROVOCATE A EVOLUTION IN THE MATEMATIC MODELS that are proposed to describe them. NEW SYSTEMS OF PARTIAL DERIVATIVE EQUATIONS THAT ARE BECOMING MORE AND MORE COMPLEX ARE THUS EMERGING. WE INTEND TO ANALYSE THE QUALITATIVE PROPERTIES OF THE SOLUTIONS OF THESE SYSTEMS. This Analyses is NOT FACILABLE THE DIFFICULTS FOR NEW PROBLEMS NEED ASSESSMENT OF NEW TECHNICAL, NEW ARGUMENTS AND Methodologies DIFERENT TO THE YA KNOWED._x000D_ _x000D_ ALSO IS IMPORTANT TO PLANT IN THE RESULTS the TEORICS TO BE OBJECTED TO AGREEMENT RESULTS TO DECIDE Whether MATEMATIC MODELS PROPOSES AUTHORITY OR MUST BE REFINATED OR REFUNDED by ALTERNATIVE MODELS. The SEARCH OF THESE ALTERNATIVAL MODELS IS OTHER OF THE PROJECT OBJECTIVES._x000D_ _x000D_ the STUDIES we see in the primary CLASIC and non-classical ELASTIC MATERIALS WITH CLASSIC and nonclassical QALD CONDUCTION. IN THIS PROJECT WE WILL STUDY THE GRADIENT MATERIALS OF DEFORMATION (ALSO KNOWN AS NON-SIMPLES), PORO-ELASTICS, MIXTURES OF MATERIALS AND MATERIALS WITH MICRO-STRUCTURE. The Tzou or GREEN-NAGHDI PROPOSES._x000D__x000D__x000D__x000D__x000D_ _x000D_ OUR INVESTIGATION PREATING TO BE INTERDISCYPLINARY TO BETWEEN KNOWING TO THE MATEMATICA AS THErmomecanica. WE INTEND TO ANSWER PHYSICAL QUESTIONS USING MATHEMATICAL TOOLS. THESE QUESTIONS WILL LEAD US TO PROPOSE ORIGINAL AND STUNTING MATHEMATICAL QUESTIONS. THE HISTORY OF MATH IS FULL OF EXAMPLES THAT SHOW HOW PHYSICS HAS BEEN A CONSTANT SOURCE OF MATHEMATICAL PROBLEMS. THIS INTERRELATIONSHIP BETWEEN THE TWO DISCIPLINES HAS LED TO THE ENRICHMENT AND EVOLUTION OF BOTH. THE PRETENSION OF OUR PROJECT IS TO CONTINUE ALONG THAT LINE. _x000D_ finally, WITH THIS PROJECT WE WANT TO PROSEQUE THE STUDIES DEVELOPED IN SEY ANTERIAL PRO-jects (to be CITTED TO CONTINUATION). IT IS IMPORTANT TO NOTE THAT THE PROBLEMS THAT WE HAVE ANALYSED AND RESOLVED IN THESE PROJECTS ARE DIFFERENT FROM THOSE WE WISH TO ANALYSE NOW. THE CONTINUED PROGRESS IN OUR STUDIES ALLOWS US TO RAISE INCREASINGLY COMPLEX MA-THEMATIC QUESTIONS. (English)
12 October 2021
0 references
Barcelona
0 references
Identifiers
MTM2016-74934-P
0 references