DESIGN, ANALYSIS AND STABILITY OF ITERATIVE PROCESSES APPLIED TO INTEGRAL AND MATRIX EQUATIONS AND AEROSPACE COMMUNICATION (Q3145819)

From EU Knowledge Graph
Revision as of 02:29, 9 October 2021 by DG Regio (talk | contribs) (‎Changed label, description and/or aliases in en: translated_label)
Jump to navigation Jump to search
Project Q3145819 in Spain
Language Label Description Also known as
English
DESIGN, ANALYSIS AND STABILITY OF ITERATIVE PROCESSES APPLIED TO INTEGRAL AND MATRIX EQUATIONS AND AEROSPACE COMMUNICATION
Project Q3145819 in Spain

    Statements

    0 references
    23,776.5 Euro
    0 references
    47,553.0 Euro
    0 references
    50.0 percent
    0 references
    1 January 2019
    0 references
    31 December 2022
    0 references
    UNIVERSIDAD POLITECNICA DE VALENCIA
    0 references
    46250
    0 references
    EL PRESENTE PROYECTO FORMA PARTE DE UN PROYECTO COORDINADO QUE PLANTEA SEIS LINEAS DE INVESTIGACION. LAS LINEAS T4, T5 Y T6 SON DE NUEVA CREACION, MIENTRAS QUE EN LAS RESTANTES SE PRETENDE CONTINUAR Y COMPLEMENTAR LOS RESULTADOS OBTENIDOS EN PROYECTOS ANTERIORES. EL CENTRO EJECUTOR DE LA LINEA T4 SERA LA UNIVERSIDAD DE LA RIOJA Y EL DE LA LINEA T6 LA UNIVERSITAT POLITECNICA DE VALENCIA. TODAS ELLAS ESTAN RELACIONADAS CON PROCESOS ITERATIVOS PARA RESOLVER PROBLEMAS NO LINEALES._x000D_ EN EL CONTEXTO DEL DISEÑO DE PROCESOS ITERATIVOS, PRETENDEMOS CENTRAR NUESTROS ESFUERZOS, POR UN LADO EN LA CONSTRUCCION DE METODOS ITERATIVOS CON MEMORIA (TANTO ESCALARES COMO MULTIDIMENSIONALES) Y EN EL USO DE APROXIMACIONES PARA LOS ACELERADORES, DISTINTAS DE LAS USADAS HASTA EL MOMENTO. POR OTRA PARTE, QUEREMOS ABORDAR LA CONSTRUCCION DE METODOS ESPECIFICOS PARA PROBLEMAS MAL CONDICIONADOS, LO QUE SE TRADUCE EN RAICES MULTIPLES EN EL CASO ESCALARA Y MATRICES SINGULARES O MAL CONDICIONADAS EN EL CASO VECTORIAL._x000D_ EN CUANTO A LA CONVERGENCIA DE LOS METODOS DISEÑADOS, TRABAJAREMOS TAMBIEN EN DOS VERTIENTES, INTENTANDO RELAJAR LAS CONDICIONES DE CONVERGENCIA Y UTILIZANDO LA TECNICA DE FUNCIONES PESO DE MANERA QUE LAS CONDICIONES SEAN LO MAS SUAVES POSIBLE._x000D_ SI LA CONVERGENCIA DE UN METODO ITERATIVO ES IMPORTANTE, NO LO ES MENOS SU ESTABILIDAD. LAS TECNICAS DE SISTEMAS DINAMICOS DISCRETOS REALES Y COMPLEJOS NOS PERMITIRAN SELECCIONAR AQUELLOS ELEMENTOS MAS ESTABLES DENTRO DE LAS FAMILIAS DISEÑADAS PREVIAMENTE, DESECHANDO LOS METODOS QUE PRESENTEN UN COMPORTAMIENTO CAOTICO. PARA ELLO UTILIZAREMOS LA TECNICAS QUE NUESTRO GRUPO HA ADAPTADO, TANTO PARA LOS METODOS CON MEMORIA, COMO PARA LOS ESQUEMAS VECTORIALES._x000D_ EL CASO PARTICULAR DE LOS PROBLEMAS NO LINEALES MATRICIALES MERECE UN ESTUDIO ESPECIFICO, POR SUS NUMEROSAS APLICACIONES EN MUCHAS CAMPOS DE LA CIENCIA Y LA INGENIERIA. PRETENDEMOS ADAPTAR LOS ESQUEMAS ITERATIVOS DISEÑADOS PARA APROXIMAR LA INVERSA DE UNA MATRIZ NO SINGULAR O LAS INVERSAS GENERALIZADAS (MOORE-PENROSE, DRAZIN,...) DE MATRICES RECTANGULARES. ASIMISMO, UTILIZAREMOS LA POTENCIA DE LOS METODOS CON MEMORIA PARA ANALIZAR LA MATRIZ SIGNO Y LA DESCOMPOSICION POLAR DE CUALQUIER MATRIZ COMPLEJA._x000D_ SI BIEN EN LOS PUNTOS ANTERIORES NOS HA INTERESADO LA CONSTRUCCION DE NUEVOS METODOS CON EL OBJETIVO DE MEJORAR LA EFICIENCIA Y ESTABILIDAD DE LOS METODOS EXISTENTES, EN LA LINEA T6 PRETENDEMOS DISEÑAR METODOS ESPECIFICOS PARA DIFERENTES PROBLEMAS QUE TENDRIAN COMO DENOMINADOR COMUN EL POSICIONAMIENTO: DETERMINACION DE ORBITAS PRELIMINARES DE SATELITES ARTIFICIALES, POSICIONAMIENTO DE UN USUARIO DE GPS, SISTEMAS DE MULTILATERACION PARA EL CONTROL DEL TRAFICO AEREO Y LAS TECNICAS DE OPTIMIZACION UTILIZADAS EN SISTEMAS CON MACHINE LEARNING, REDES NEURONALES E INTELIGENCIA ARTIFICIAL. (Spanish)
    0 references
    THIS PROJECT IS PART OF A COORDINATED PROJECT THAT PROPOSES SIX LINES OF RESEARCH. LINES T4, T5 AND T6 ARE NEWLY CREATED, WHILE THE REMAINING LINES ARE INTENDED TO CONTINUE AND COMPLEMENT THE RESULTS OBTAINED IN PREVIOUS PROJECTS. THE EXECUTION CENTRE OF LINE T4 WILL BE THE UNIVERSITY OF LA RIOJA AND THAT OF LINE T6 WILL BE THE POLYTECHNIC UNIVERSITY OF VALENCIA. ALL OF THEM ARE RELATED TO ITERATIVE PROCESSES TO SOLVE NON-LINEAR PROBLEMS._x000D_ IN THE CONTEXT OF THE DESIGN OF ITERATIVE PROCESSES, WE INTEND TO FOCUS OUR EFFORTS, ON THE ONE HAND, ON THE CONSTRUCTION OF ITERATIVE METHODS WITH MEMORY (BOTH SCALAR AND MULTIDIMENSIONAL) AND ON THE USE OF APPROACHES FOR ACCELERATORS, DIFFERENT FROM THOSE USED SO FAR. ON THE OTHER HAND, WE WANT TO APPROACH THE CONSTRUCTION OF SPECIFIC METHODS FOR BADLY CONDITIONED PROBLEMS, WHICH TRANSLATES INTO MULTIPLE ROOTS IN THE SCALAR CASE AND SINGULAR OR BADLY CONDITIONED MATRICES IN THE VECTOR CASE._x000D_ AS FOR THE CONVERGENCE OF THE DESIGNED METHODS, WE WILL ALSO WORK IN TWO SLOPES, TRYING TO RELAX THE CONVERGENCE CONDITIONS AND USING THE TECHNIQUE OF WEIGHT FUNCTIONS SO THAT THE CONDITIONS ARE AS SMOOTH AS POSSIBLE._x000D_ IF THE CONVERGENCE OF AN ITERATIVE METHOD IS IMPORTANT, SO IS ITS STABILITY. THE TECHNIQUES OF REAL AND COMPLEX DISCRETE DYNAMIC SYSTEMS WILL ALLOW US TO SELECT THE MOST STABLE ELEMENTS WITHIN THE PREVIOUSLY DESIGNED FAMILIES, DISCARDING THE METHODS THAT PRESENT A CHAOTIC BEHAVIOUR. FOR THIS WE WILL USE THE TECHNIQUES THAT OUR GROUP HAS ADAPTED, BOTH FOR METHODS WITH MEMORY AND FOR VECTOR SCHEMES._x000D_ THE PARTICULAR CASE OF NON-LINEAR MATRIX PROBLEMS DESERVES A SPECIFIC STUDY, DUE TO ITS NUMEROUS APPLICATIONS IN MANY FIELDS OF SCIENCE AND ENGINEERING. WE INTEND TO ADAPT ITERATIVE SCHEMES DESIGNED TO APPROXIMATE THE INVERSE OF A NON-SINGLE MATRIX OR GENERALIZED INVERSES (MOORE-PENROSE, DRAZIN,...) OF RECTANGULAR MATRICES. ALSO, WE WILL USE THE POWER OF THE METHODS WITH MEMORY TO ANALYZE THE SIGN MATRIX AND THE POLAR DECOMPOSITION OF ANY COMPLEX MATRIX._x000D_ ALTHOUGH IN THE PREVIOUS POINTS WE HAVE BEEN INTERESTED IN THE CONSTRUCTION OF NEW METHODS WITH THE AIM OF IMPROVING THE EFFICIENCY AND STABILITY OF EXISTING METHODS, IN LINE T6 WE INTEND TO DESIGN SPECIFIC METHODS FOR DIFFERENT PROBLEMS THAT WOULD HAVE AS A COMMON DENOMINATOR POSITIONING: DETERMINATION OF PRELIMINARY ORBITS OF ARTIFICIAL SATELLITES, POSITIONING OF A GPS USER, MULTILATERATION SYSTEMS FOR AIR TRAFFIC CONTROL AND OPTIMIZATION TECHNIQUES USED IN SYSTEMS WITH MACHINE LEARNING, NEURAL NETWORKS AND ARTIFICIAL INTELLIGENCE. (English)
    0 references
    Valencia
    0 references

    Identifiers

    PGC2018-095896-B-C22
    0 references