Antiferromagnetic proximity effect and development of epitaxial bimetallic antiferromagnets – two routes towards next-generation spintronics (Q84261): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed label, description and/or aliases in 2 languages: Changing unique label-description pair)
(‎Removed claim: financed by (P890): Directorate-General for Regional and Urban Policy (Q8361), Removing unnecessary financed by statement)
Property / financed by
 
Property / financed by: Directorate-General for Regional and Urban Policy / rank
Normal rank
 

Revision as of 05:23, 29 October 2020

Project Q84261 in Poland
Language Label Description Also known as
English
Antiferromagnetic proximity effect and development of epitaxial bimetallic antiferromagnets – two routes towards next-generation spintronics
Project Q84261 in Poland

    Statements

    0 references
    787,310.0 zloty
    0 references
    188,954.4 Euro
    13 January 2020
    0 references
    787,310.0 zloty
    0 references
    188,954.4 Euro
    13 January 2020
    0 references
    100.0 percent
    0 references
    1 March 2018
    0 references
    29 February 2020
    0 references
    AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE
    0 references
    The main active components of spintronic elements are ferromagnets (FMs), in which a net spin polarization is responsible for logical zeros and ones. Antiferromagnets (AFMs), in which magnetic order is accompanied by a zero net magnetic moment, play an important role in the spin-valve effect by establishing direction of FM reference layer via an exchange bias effect. However, recent demonstration of magneto-transport effects in AFMs and their ultrafast magnetization dynamics make them potential candidates that could replace FMs in spintronic devices. In this project I propose two routes that will lead to development of antiferromagnetic spintronics. The first one is focused on tuning magnetic properties of AFMs via proximity effect in AFM/AFM bilayers. The second path concentrates on the epitaxial bimetallic AFMs. In both paths the feasibility of AFM spintronics with studied AFM materials will be presented. (Polish)
    0 references
    The main active components of spintronic elements are ferromagnets (FMS), in which a net spin polarisation is responsible for logical zeros and ones. Antiferromagnets (AFMs), in which magnetic order is accompanied by a zero net magnetic moment, play an important role in the spin-valve effect by establishing direction of FM reference layer via an exchange bias effect. However, recent demonstration of magneto-transport effects in AFMs and their UltraFast magnetisation dynamics make them potential candidates that could replace FMS in spintronic devices. In this project I propose two routes that will lead to development of antiferromagnetic spintronics. The first one is focused on tuning magnetic properties of AFMs via proximity effect in AFM/AFM bilayers. The second path concentrates on the epitaxial bimetallic AFMs. In both paths the feasibility of AFM spintronics with studied AFM materials will be presented. (English)
    14 October 2020
    0 references

    Identifiers

    POIR.04.04.00-00-3E5D/17
    0 references