Q84303 (Q84303): Difference between revisions
Jump to navigation
Jump to search
(Created claim: summary (P836): Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful tools of chemical analysis. Invention of multidimensional NMR in 1970s opened way to such advanced studies as determination of biomolecular structures in solution. However, multidimensional spectroscopy is very time-consuming due to rules of conventional signal sampling theory. The measurement times can reach several days to provide sufficient resolution. Moreover, many NM...) |
(Changed label, description and/or aliases in 1 language: remove_english_label) |
||
label / en | label / en | ||
Revision as of 12:35, 14 October 2020
Project in Poland financed by DG Regio
Language | Label | Description | Also known as |
---|---|---|---|
English | No label defined |
Project in Poland financed by DG Regio |
Statements
1,929,569.0 zloty
0 references
1,929,569.0 zloty
0 references
100.0 percent
0 references
1 July 2018
0 references
30 June 2021
0 references
UNIWERSYTET WARSZAWSKI
0 references
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful tools of chemical analysis. Invention of multidimensional NMR in 1970s opened way to such advanced studies as determination of biomolecular structures in solution. However, multidimensional spectroscopy is very time-consuming due to rules of conventional signal sampling theory. The measurement times can reach several days to provide sufficient resolution. Moreover, many NMR experiments have to be repeated in varying conditions which makes them prohibitively long. The current project proposes a new approach to accelerate the serial NMR measurements manyfold. The approach, based on Radon transform and fractional Fourier transform will be developed and implemented in various kinds of NMR spectroscopy: solid state, pure-shift, time-resolved and diffusion-ordered. Results will contribute to more efficient exploitation of NMR in pharmaceutical research and food industry, to mention just few applications. (Polish)
0 references
Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful tools of chemical analysis. Invention of multidimensional NMR in 1970s opened way to such advanced studies as determination of biomolecular structures in solution. However, multidimensional spectroscopy is very time-consuming due to rules of conventional signal sampling theory. The measurement times can reach several days to provide sufficient resolution. Moreover, many NMR experiments have to be repeated in varying conditions which makes them prohibitively long. The current project Proposes a new approach to accelerate the series NMR measurements manyfold. The approach, based on Radon transform and fractional Fourier transform will be developed and implemented in various kinds of NMR spectroscopy: solid state, pure-shift, time-resolved and diffusion-ordered. Results will contribute to more efficient exploitation of NMR in pharmaceutical research and food industry, to mention just few applications. (English)
14 October 2020
0 references
Identifiers
POIR.04.04.00-00-4343/17
0 references