Q84169 (Q84169): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Created claim: summary (P836): High entropy alloys (HEAs) are the new class of materials with a very unique microstructure and properties. They contain four or more components in equal or near equal atomic percent. The high configurational entropy associated to mixing several elements inhibit the formation of brittle intermetallic phases in favour of multicomponent random solid solutions. Due to the enormous number of combinations of components and their concentrations, the e...)
(‎Changed label, description and/or aliases in 1 language: remove_english_label)
label / enlabel / en
B-initio modelling of phase stability and capacities of higher-entoil

Revision as of 12:29, 14 October 2020

Project in Poland financed by DG Regio
Language Label Description Also known as
English
No label defined
Project in Poland financed by DG Regio

    Statements

    0 references
    799,420.0 zloty
    0 references
    191,860.8 Euro
    13 January 2020
    0 references
    799,420.0 zloty
    0 references
    191,860.8 Euro
    13 January 2020
    0 references
    100.0 percent
    0 references
    1 January 2017
    0 references
    30 June 2019
    0 references
    POLITECHNIKA WARSZAWSKA
    0 references
    High entropy alloys (HEAs) are the new class of materials with a very unique microstructure and properties. They contain four or more components in equal or near equal atomic percent. The high configurational entropy associated to mixing several elements inhibit the formation of brittle intermetallic phases in favour of multicomponent random solid solutions. Due to the enormous number of combinations of components and their concentrations, the experimental investigation of all combinations is impossible. Thus phase stability and properties of HEAs are still not known very well and there is no existing unified theory to cover the atomistic and thermodynamic aspects of HEAs. The simulations performed within this project will not only improve the understanding of that new class of materials but they will enable the design of novel alloy compositions with unique properties for potential industrial applications. (Polish)
    0 references
    High entropy alloys (HEAs) are the new class of materials with a very unique microstructure and properties. They contain four or more components in equal or near equal atomic percent. The high configurational entropy associated to mixing several elements inhibit the formation of brittle intermetallic phases in favour of multicomponent random solid solutions. Due to the enormous number of combinations of components and their concentrations, the experimental investigation of all combinations is impossible. Thus phase stability and properties of HEAs are still not known very well and there is no existing unified theory to cover the atomistic and thermodynamic aspects of HEAs. The simulations performed within this project will not only improve the understanding of that new class of materials but they will enable the design of novel alloy compositions with unique properties for potential industrial applications. (English)
    14 October 2020
    0 references

    Identifiers

    POIR.04.04.00-00-1BA2/16
    0 references