Purchase of Rapid Prototype production machine for 3D printing for Metris3D Kft. (Q3914358): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed an Item: Adding English translations)
(‎Changed an Item: Adding French translations)
Property / summary
 
L’applicabilité de la production additive est sans frontières. La fabrication additive était plus tôt dans le processus de prototypage ou de fabrication, avec la visualisation des dessins maîtres finis, puis avec des empreintes tangibles pour que le concepteur teste le produit fini sous une forme tangible avant d’entrer dans la production, l’intègre dans d’autres processus et effectue des tests de géométrie physique sur celui-ci. Ce domaine était auparavant entièrement théorique dans la fabrication d’aéronefs, les procédures dentaires, les fabricants de vêtements de modélisation de mode ou la conception architecturale. Alors que l’appariement des couches imprimées, c’est-à-dire la théorie de l’impression elle-même, repose sur une base relativement simple, les ingrédients exigent un niveau élevé de connaissances et de connaissances techniques. La technologie de la future imprimante 3D fera partie intégrante de: — le protoypage rapide 3D plus humain ou conception d’outils (CAD) — la nécessité d’appliquer la technologie d’impression 3D personnalisée dans l’industrie dans divers domaines industriels — fabrication d’outils industriels, utilisation quotidienne — la possibilité de réaliser une production à grande échelle et — à l’avenir, l’impression de tissus humains. Techniques de fabrication additive: + SLA Technique d’impression 3D extrêmement avancée qui fusionne les couches de résines photopolymères traitées au laser. La structure de la couche est créée dans un dépôt de résine, où le faisceau laser, suivant le contour du modèle 3D, solidifie les molécules de résine sur la ligne de contour, construit l’impression 3D par couche jusqu’à ce que la forme souhaitée soit atteinte. Cette impression 3D peut être ultérieurement usinée ou utilisée comme moule d’injection ou pour les techniques de coulée. + Grâce aux buses FDM, le matériau de moulage par injection pénètre dans l’espace de coulée. Dans cette technologie, le positionnement des buses coulées suit le contour du modèle 3D en appliquant le plastique thermo-amidon devant la couche suivante. + 3DP Ce procédé d’impression 3D produit le modèle dans un récipient qui contient à la fois de l’amidon et du liant. L’environnement du modèle fini est rempli de poussière facilement amovible dans ce cas, donc aucun véhicule n’est utilisé. C’est la seule façon de produire des impressions 3D colorées. Informations techniques du Pentacom RAPID Prototyping prototyppe prototyppe pervice: Taille de l’enceinte ~ 1800 x 1200 x 1 900 mm (LxWxH) Capacité de production 400 x 330 x 400 mm (LxWxH) Exigences électriques 230V/50 Hz Consommation actuelle seulement 2 kW DLP® 1-fabricant tête 1920 x 1080 Résolution du pixel Taille du pixel ~ 40 µm Longueur de la vague UV-LED (365 ± 5) nm Épaisseur de la couche 25-150 µm sortie UV — capacité 365nm Température thermique de fonctionnement: 20-25 °C Température 1 °C/heure Humidité relative Max 50 % (French)
Property / summary: L’applicabilité de la production additive est sans frontières. La fabrication additive était plus tôt dans le processus de prototypage ou de fabrication, avec la visualisation des dessins maîtres finis, puis avec des empreintes tangibles pour que le concepteur teste le produit fini sous une forme tangible avant d’entrer dans la production, l’intègre dans d’autres processus et effectue des tests de géométrie physique sur celui-ci. Ce domaine était auparavant entièrement théorique dans la fabrication d’aéronefs, les procédures dentaires, les fabricants de vêtements de modélisation de mode ou la conception architecturale. Alors que l’appariement des couches imprimées, c’est-à-dire la théorie de l’impression elle-même, repose sur une base relativement simple, les ingrédients exigent un niveau élevé de connaissances et de connaissances techniques. La technologie de la future imprimante 3D fera partie intégrante de: — le protoypage rapide 3D plus humain ou conception d’outils (CAD) — la nécessité d’appliquer la technologie d’impression 3D personnalisée dans l’industrie dans divers domaines industriels — fabrication d’outils industriels, utilisation quotidienne — la possibilité de réaliser une production à grande échelle et — à l’avenir, l’impression de tissus humains. Techniques de fabrication additive: + SLA Technique d’impression 3D extrêmement avancée qui fusionne les couches de résines photopolymères traitées au laser. La structure de la couche est créée dans un dépôt de résine, où le faisceau laser, suivant le contour du modèle 3D, solidifie les molécules de résine sur la ligne de contour, construit l’impression 3D par couche jusqu’à ce que la forme souhaitée soit atteinte. Cette impression 3D peut être ultérieurement usinée ou utilisée comme moule d’injection ou pour les techniques de coulée. + Grâce aux buses FDM, le matériau de moulage par injection pénètre dans l’espace de coulée. Dans cette technologie, le positionnement des buses coulées suit le contour du modèle 3D en appliquant le plastique thermo-amidon devant la couche suivante. + 3DP Ce procédé d’impression 3D produit le modèle dans un récipient qui contient à la fois de l’amidon et du liant. L’environnement du modèle fini est rempli de poussière facilement amovible dans ce cas, donc aucun véhicule n’est utilisé. C’est la seule façon de produire des impressions 3D colorées. Informations techniques du Pentacom RAPID Prototyping prototyppe prototyppe pervice: Taille de l’enceinte ~ 1800 x 1200 x 1 900 mm (LxWxH) Capacité de production 400 x 330 x 400 mm (LxWxH) Exigences électriques 230V/50 Hz Consommation actuelle seulement 2 kW DLP® 1-fabricant tête 1920 x 1080 Résolution du pixel Taille du pixel ~ 40 µm Longueur de la vague UV-LED (365 ± 5) nm Épaisseur de la couche 25-150 µm sortie UV — capacité 365nm Température thermique de fonctionnement: 20-25 °C Température 1 °C/heure Humidité relative Max 50 % (French) / rank
 
Normal rank
Property / summary: L’applicabilité de la production additive est sans frontières. La fabrication additive était plus tôt dans le processus de prototypage ou de fabrication, avec la visualisation des dessins maîtres finis, puis avec des empreintes tangibles pour que le concepteur teste le produit fini sous une forme tangible avant d’entrer dans la production, l’intègre dans d’autres processus et effectue des tests de géométrie physique sur celui-ci. Ce domaine était auparavant entièrement théorique dans la fabrication d’aéronefs, les procédures dentaires, les fabricants de vêtements de modélisation de mode ou la conception architecturale. Alors que l’appariement des couches imprimées, c’est-à-dire la théorie de l’impression elle-même, repose sur une base relativement simple, les ingrédients exigent un niveau élevé de connaissances et de connaissances techniques. La technologie de la future imprimante 3D fera partie intégrante de: — le protoypage rapide 3D plus humain ou conception d’outils (CAD) — la nécessité d’appliquer la technologie d’impression 3D personnalisée dans l’industrie dans divers domaines industriels — fabrication d’outils industriels, utilisation quotidienne — la possibilité de réaliser une production à grande échelle et — à l’avenir, l’impression de tissus humains. Techniques de fabrication additive: + SLA Technique d’impression 3D extrêmement avancée qui fusionne les couches de résines photopolymères traitées au laser. La structure de la couche est créée dans un dépôt de résine, où le faisceau laser, suivant le contour du modèle 3D, solidifie les molécules de résine sur la ligne de contour, construit l’impression 3D par couche jusqu’à ce que la forme souhaitée soit atteinte. Cette impression 3D peut être ultérieurement usinée ou utilisée comme moule d’injection ou pour les techniques de coulée. + Grâce aux buses FDM, le matériau de moulage par injection pénètre dans l’espace de coulée. Dans cette technologie, le positionnement des buses coulées suit le contour du modèle 3D en appliquant le plastique thermo-amidon devant la couche suivante. + 3DP Ce procédé d’impression 3D produit le modèle dans un récipient qui contient à la fois de l’amidon et du liant. L’environnement du modèle fini est rempli de poussière facilement amovible dans ce cas, donc aucun véhicule n’est utilisé. C’est la seule façon de produire des impressions 3D colorées. Informations techniques du Pentacom RAPID Prototyping prototyppe prototyppe pervice: Taille de l’enceinte ~ 1800 x 1200 x 1 900 mm (LxWxH) Capacité de production 400 x 330 x 400 mm (LxWxH) Exigences électriques 230V/50 Hz Consommation actuelle seulement 2 kW DLP® 1-fabricant tête 1920 x 1080 Résolution du pixel Taille du pixel ~ 40 µm Longueur de la vague UV-LED (365 ± 5) nm Épaisseur de la couche 25-150 µm sortie UV — capacité 365nm Température thermique de fonctionnement: 20-25 °C Température 1 °C/heure Humidité relative Max 50 % (French) / qualifier
 
point in time: 10 February 2022
Timestamp+2022-02-10T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

Revision as of 07:07, 10 February 2022

Project Q3914358 in Hungary
Language Label Description Also known as
English
Purchase of Rapid Prototype production machine for 3D printing for Metris3D Kft.
Project Q3914358 in Hungary

    Statements

    0 references
    586,224.52 Euro
    0.00276521 Euro
    3 December 2021
    0 references
    212,000,000 forint
    0 references
    1,159,057.254 Euro
    0.0027336256 Euro
    14 December 2021
    0 references
    424,000,000.0 forint
    0 references
    50.0 percent
    0 references
    15 February 2016
    0 references
    6 June 2016
    0 references
    Metris3D Méréstechnikai Korlátolt Felelősségű Társaság
    0 references
    0 references

    48°8'30.55"N, 21°26'39.26"E
    0 references
    Az Additív Gyártás alkalmazhatósága határok nélküli. Az Additív Gyártás korábban a prototípusgyártás, avagy gyártás előkészítés folyamatban jelent meg, a kész mester rajzok vizualizációjával, majd kézzelfogható nyomatokkal így megvalósítva a tervezőmérnök számára, hogy a készterméket a gyártásba kerülés előtt kézzel fogható formában teszteljék, beillesszék más folyamatokba és fizikai geometriai teszteket végezhessenek rajta. Ez a terület korábban teljesen elméleti volt a reülőgép gyártásban, fogászati beavatkozásoknál, fashion modelling ruhakészítőknél vagy építészeti tervezésben. Míg a nyomtatott rétegek egymásra illesztése, azaz maga a nyomtatás elmélete viszonylag egyszerű alapokra épül, a hozzávaló kellékek magas szintű ismereteket és technikai tudást kívánnak. A jövő 3D nyomtató technológiájának szerves része lehet majd: - az emberközelibb 3D Rapid Protoyping, vagy szerszám tervezés (CAD) - a szükség, hogy az iparban személyre szabott 3D nyomtató technológia kerüljön alkalmazásra különféle ipari területeken - ipari szerszámkészítésben, mindennapi használatban - a nagysorozatú gyártás megvalósításának lehetősége és - a jövőben akár emberi szövetek nyomtatása. Additív Gyártás technikái: + SLA Rendkívül fejlett 3D Nyomtatási technika, amely lézerkezeléses fotopolimer gyanta rétegeket olvaszt össze.A rétegfelépítés egy gyantatárban jön létre, ahol a lézersugár a 3D modell kontúrját lekövetve megszilárdítja a kontúrvonalon elhelyezkedő gyantamolekulákat, felépíti a 3D nyomatot rétegenként egészen a kívánt forma eléréséig. Ez a 3D nyomat később megmunkálható, vagy fröccsöntő formaként vagy öntészeti technikákhoz is felhasználható. + FDM Fúvókákon keresztül kerül az öntési térbe az fröccsöntészeti anyag. Ebben a technológiában az öntészeti fúvókák pozícionálása követi le a 3D modell kontúrját a thermo-keményítő műanyag felhordásával a következő réteg előtt. +3DP Ez a 3D nyomtatási eljárás a modellt egy olyan tartályban gyártja le ami egyszerre tartalmazza a keményítő és a kötőanyagot is.A kész modell környezetét jelen esetben könnyen eltávolítható por tölti ki így nem használnak vivőanyagot. Ez az egyetlen módszer, ami színes 3D nyomatokat eredményez. Beszerzendő PENTACOM RAPID PROTOTYPING PROTOTÍPUS GYÁRTÓ GÉP technikai információi: Befoglaló Méret ~ 1800 x 1200 x 1900 mm (LxWxH) Gyárótér kapacitás 400 x 330 x 400 mm (LxWxH) Elektromos igények 230V / 50 Hz Áramfelvétel csupán 2 kW DLP® 1-gyártó fej 1920 x 1080 Pixel felbontással Pixel méret ~ 40 µm Hullámhossz UV-LED (365 ± 5) nm Layer vastagság 25-150 µm UV kimenet - kapacitás 365nm Működési hőméséklet: 20-25 °C Hőmérsékleti érték 1°C/hour Relatív páratartalom Max 50 % (Hungarian)
    0 references
    The applicability of Additive Production is without borders. The Additive Manufacturing was earlier in the process of prototyping or manufacturing, with visualisation of the finished master drawings, and then with tangible prints for the designer to test the finished product in a tangible form before entering the production, integrate it into other processes and perform physical geometry tests on it. This area was previously entirely theoretical in aircraft manufacturing, dental procedures, fashion modeling clothing makers or architectural design. While the matching of printed layers, i.e. the printing theory itself, is based on a relatively simple basis, the ingredients require a high level of knowledge and technical knowledge. The technology of the future 3D printer will be an integral part of: — the more human 3D Rapid Protoyping or Tool Design (CAD) — the need to apply customised 3D printing technology in the industry in various industrial areas — industrial tool making, everyday use — the possibility of realising large-scale production and — in the future, even printing human fabrics. Additive Manufacturing Techniques: + SLA Extremely advanced 3D Printing technique that merges laser-treated photopolymer resin layers.The layer structure is created in a resin repository, where the laser beam, following the contour of the 3D model, solidifies the resin molecules on the contour line, builds the 3D print by layer until the desired shape is reached. This 3D print can be later machined or used as injection mould or for casting techniques. + Through FDM nozzles the injection moulding material enters the casting space. In this technology, the positioning of the casting nozzles follows the contour of the 3D model by applying thermo-starch plastic in front of the next layer. + 3DP This 3D printing process produces the model in a container that contains both starch and binder.The environment of the finished model is filled with easily removable dust in this case, so no vehicle is used. It’s the only way to produce colorful 3D prints. Technical Information of the Pentacom RAPID Prototyping PROTOTYPPE PROTOTY PERVICE: Enclosure Size ~ 1800 x 1200 x 1 900 mm (LxWxH) Production space capacity 400 x 330 x 400 mm (LxWxH) Electrical requirements 230V/50 Hz Current consumption only 2 kW DLP® 1-manufacturer head 1920 x 1080 Pixel resolution Pixel size ~ 40 µm Wave length UV-LED (365 ± 5) nm Layer thickness 25-150 µm UV output — capacity 365nm Operating Thermal Temperature: 20-25 °C Temperature 1 °C/hour Relative humidity Max 50 % (English)
    8 February 2022
    0 references
    L’applicabilité de la production additive est sans frontières. La fabrication additive était plus tôt dans le processus de prototypage ou de fabrication, avec la visualisation des dessins maîtres finis, puis avec des empreintes tangibles pour que le concepteur teste le produit fini sous une forme tangible avant d’entrer dans la production, l’intègre dans d’autres processus et effectue des tests de géométrie physique sur celui-ci. Ce domaine était auparavant entièrement théorique dans la fabrication d’aéronefs, les procédures dentaires, les fabricants de vêtements de modélisation de mode ou la conception architecturale. Alors que l’appariement des couches imprimées, c’est-à-dire la théorie de l’impression elle-même, repose sur une base relativement simple, les ingrédients exigent un niveau élevé de connaissances et de connaissances techniques. La technologie de la future imprimante 3D fera partie intégrante de: — le protoypage rapide 3D plus humain ou conception d’outils (CAD) — la nécessité d’appliquer la technologie d’impression 3D personnalisée dans l’industrie dans divers domaines industriels — fabrication d’outils industriels, utilisation quotidienne — la possibilité de réaliser une production à grande échelle et — à l’avenir, l’impression de tissus humains. Techniques de fabrication additive: + SLA Technique d’impression 3D extrêmement avancée qui fusionne les couches de résines photopolymères traitées au laser. La structure de la couche est créée dans un dépôt de résine, où le faisceau laser, suivant le contour du modèle 3D, solidifie les molécules de résine sur la ligne de contour, construit l’impression 3D par couche jusqu’à ce que la forme souhaitée soit atteinte. Cette impression 3D peut être ultérieurement usinée ou utilisée comme moule d’injection ou pour les techniques de coulée. + Grâce aux buses FDM, le matériau de moulage par injection pénètre dans l’espace de coulée. Dans cette technologie, le positionnement des buses coulées suit le contour du modèle 3D en appliquant le plastique thermo-amidon devant la couche suivante. + 3DP Ce procédé d’impression 3D produit le modèle dans un récipient qui contient à la fois de l’amidon et du liant. L’environnement du modèle fini est rempli de poussière facilement amovible dans ce cas, donc aucun véhicule n’est utilisé. C’est la seule façon de produire des impressions 3D colorées. Informations techniques du Pentacom RAPID Prototyping prototyppe prototyppe pervice: Taille de l’enceinte ~ 1800 x 1200 x 1 900 mm (LxWxH) Capacité de production 400 x 330 x 400 mm (LxWxH) Exigences électriques 230V/50 Hz Consommation actuelle seulement 2 kW DLP® 1-fabricant tête 1920 x 1080 Résolution du pixel Taille du pixel ~ 40 µm Longueur de la vague UV-LED (365 ± 5) nm Épaisseur de la couche 25-150 µm sortie UV — capacité 365nm Température thermique de fonctionnement: 20-25 °C Température 1 °C/heure Humidité relative Max 50 % (French)
    10 February 2022
    0 references
    Timár, Szabolcs-Szatmár-Bereg
    0 references

    Identifiers

    GINOP-1.2.1-15-2015-00448
    0 references