Development of packaging of aluminium steam-contaminated PET from inter-production waste (Q3957971): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed an Item: add summary)
(‎Changed an Item: Adding English translations)
Property / summary
 
Research and development with this support focuses on the recycling of waste from metalised PET film and the production of packaging material made of multi-layered film made of recycled material. Domestic PET processing shows an increase of 38 % between 2007 and 2013, due to the fact that the raw material is perfectly suited for packaging technical purposes due to its low weight, good gas-tightness and transparency. The packaging industry accounts for nearly 40 % of the domestic consumption of plastics, i.e. it produces the most plastic waste, since the estimated lifetime of packaging materials is that almost 100 % will be waste within a year. Based on the above, it can be concluded that the recycling of PET waste produced in Hungary and worldwide is an unquestionably important task in order to avoid damage to our environment and to comply with the idea of sustainable development. While the use of metallised PET films is increasing year after year, the collection and recycling of waste from these products is not yet a solved issue, and therefore such waste is usually disposed of by landfilling, which is the least serving the goals of sustainable development under the European Union legislation on waste management. The present development aims to fill this gap by reusing the metalised PET waste that we have accumulated by ourselves and which may subsequently be found elsewhere in its material, even as a thermoformed product suitable for food packaging, at a much higher value than the procedures known to date. The biggest obstacle to the recycling of metalised PET mills is the fact that the waste generated has a very limited cross-sectional dimension, so that this value must be increased for processing, and because of its metalised nature, the colour of the film produced and the products made from them show a yellowish-green colour, which produces a very nasty overall effect. As a first step in research and development, the very large amount of metalised PET inter-production waste generated by our company over the years, which is currently collected in the form of grinds, will be processed with an extruder line suitable for the production of multi-layer film with twin-twin extruders. Our aim is to produce coextruded film, the middle part of which, the so-called core material, would consist of at least 50 % of large quantities of metalised PET grindings, currently unrecycled, and the top layer would be a black layer made of PET material. Thus, we will be able to produce a film produced at less cost due to the low value of the raw material, but with the same mechanical characteristics as the foils currently used. However, in order to achieve this, we need to overcome a number of problems. One of these problems is that, due to the hydrophilic nature of PET, it is prone to moisture absorption, which causes degradation during processing to a very large extent reduces the mechanical properties of the finished film. To avoid this, our material flow would be channelled through an infrared crystallising device, and the removal of the additional moisture content would be ensured by an extruder machine with several fumigating zones, and the corresponding mechanical properties would be achieved by adding additives in a specified amount during the development. Another task to be solved is that, during the production of multi-layer film, a melt fracture may occur between the streams of materials with different viscosity in the moulding tool, which must be avoided. To this end, during the development, we define the processing technology parameters under which this phenomenon does not occur, so that excellent adhesion can develop between the different layers. As the second step of research and development, we produce thermoformed products that can serve as food packaging, using two experimental press airforming machines operating with moulding technology based on very different princies, developed in the first step, which are considered to be of appropriate quality. The main difference between the processing technology of the two machines is that one, the GN800 device, heats the film to be moulded with radiant heating, and the heating, moulding and cut-out are carried out in separate working phases, whereas in the case of the GN3021DX equipment operating with contact heating, these three operations are carried out in one step. These processing techniques have a very high impact on the final quality of the finished product and thus on its usability. In the case of GN3021DX using contact heating, a smaller technological shrink can be expected than in the case of the GN800 with radiant heating and several working phases, where the moulded product is the shaped product (English)
Property / summary: Research and development with this support focuses on the recycling of waste from metalised PET film and the production of packaging material made of multi-layered film made of recycled material. Domestic PET processing shows an increase of 38 % between 2007 and 2013, due to the fact that the raw material is perfectly suited for packaging technical purposes due to its low weight, good gas-tightness and transparency. The packaging industry accounts for nearly 40 % of the domestic consumption of plastics, i.e. it produces the most plastic waste, since the estimated lifetime of packaging materials is that almost 100 % will be waste within a year. Based on the above, it can be concluded that the recycling of PET waste produced in Hungary and worldwide is an unquestionably important task in order to avoid damage to our environment and to comply with the idea of sustainable development. While the use of metallised PET films is increasing year after year, the collection and recycling of waste from these products is not yet a solved issue, and therefore such waste is usually disposed of by landfilling, which is the least serving the goals of sustainable development under the European Union legislation on waste management. The present development aims to fill this gap by reusing the metalised PET waste that we have accumulated by ourselves and which may subsequently be found elsewhere in its material, even as a thermoformed product suitable for food packaging, at a much higher value than the procedures known to date. The biggest obstacle to the recycling of metalised PET mills is the fact that the waste generated has a very limited cross-sectional dimension, so that this value must be increased for processing, and because of its metalised nature, the colour of the film produced and the products made from them show a yellowish-green colour, which produces a very nasty overall effect. As a first step in research and development, the very large amount of metalised PET inter-production waste generated by our company over the years, which is currently collected in the form of grinds, will be processed with an extruder line suitable for the production of multi-layer film with twin-twin extruders. Our aim is to produce coextruded film, the middle part of which, the so-called core material, would consist of at least 50 % of large quantities of metalised PET grindings, currently unrecycled, and the top layer would be a black layer made of PET material. Thus, we will be able to produce a film produced at less cost due to the low value of the raw material, but with the same mechanical characteristics as the foils currently used. However, in order to achieve this, we need to overcome a number of problems. One of these problems is that, due to the hydrophilic nature of PET, it is prone to moisture absorption, which causes degradation during processing to a very large extent reduces the mechanical properties of the finished film. To avoid this, our material flow would be channelled through an infrared crystallising device, and the removal of the additional moisture content would be ensured by an extruder machine with several fumigating zones, and the corresponding mechanical properties would be achieved by adding additives in a specified amount during the development. Another task to be solved is that, during the production of multi-layer film, a melt fracture may occur between the streams of materials with different viscosity in the moulding tool, which must be avoided. To this end, during the development, we define the processing technology parameters under which this phenomenon does not occur, so that excellent adhesion can develop between the different layers. As the second step of research and development, we produce thermoformed products that can serve as food packaging, using two experimental press airforming machines operating with moulding technology based on very different princies, developed in the first step, which are considered to be of appropriate quality. The main difference between the processing technology of the two machines is that one, the GN800 device, heats the film to be moulded with radiant heating, and the heating, moulding and cut-out are carried out in separate working phases, whereas in the case of the GN3021DX equipment operating with contact heating, these three operations are carried out in one step. These processing techniques have a very high impact on the final quality of the finished product and thus on its usability. In the case of GN3021DX using contact heating, a smaller technological shrink can be expected than in the case of the GN800 with radiant heating and several working phases, where the moulded product is the shaped product (English) / rank
 
Normal rank
Property / summary: Research and development with this support focuses on the recycling of waste from metalised PET film and the production of packaging material made of multi-layered film made of recycled material. Domestic PET processing shows an increase of 38 % between 2007 and 2013, due to the fact that the raw material is perfectly suited for packaging technical purposes due to its low weight, good gas-tightness and transparency. The packaging industry accounts for nearly 40 % of the domestic consumption of plastics, i.e. it produces the most plastic waste, since the estimated lifetime of packaging materials is that almost 100 % will be waste within a year. Based on the above, it can be concluded that the recycling of PET waste produced in Hungary and worldwide is an unquestionably important task in order to avoid damage to our environment and to comply with the idea of sustainable development. While the use of metallised PET films is increasing year after year, the collection and recycling of waste from these products is not yet a solved issue, and therefore such waste is usually disposed of by landfilling, which is the least serving the goals of sustainable development under the European Union legislation on waste management. The present development aims to fill this gap by reusing the metalised PET waste that we have accumulated by ourselves and which may subsequently be found elsewhere in its material, even as a thermoformed product suitable for food packaging, at a much higher value than the procedures known to date. The biggest obstacle to the recycling of metalised PET mills is the fact that the waste generated has a very limited cross-sectional dimension, so that this value must be increased for processing, and because of its metalised nature, the colour of the film produced and the products made from them show a yellowish-green colour, which produces a very nasty overall effect. As a first step in research and development, the very large amount of metalised PET inter-production waste generated by our company over the years, which is currently collected in the form of grinds, will be processed with an extruder line suitable for the production of multi-layer film with twin-twin extruders. Our aim is to produce coextruded film, the middle part of which, the so-called core material, would consist of at least 50 % of large quantities of metalised PET grindings, currently unrecycled, and the top layer would be a black layer made of PET material. Thus, we will be able to produce a film produced at less cost due to the low value of the raw material, but with the same mechanical characteristics as the foils currently used. However, in order to achieve this, we need to overcome a number of problems. One of these problems is that, due to the hydrophilic nature of PET, it is prone to moisture absorption, which causes degradation during processing to a very large extent reduces the mechanical properties of the finished film. To avoid this, our material flow would be channelled through an infrared crystallising device, and the removal of the additional moisture content would be ensured by an extruder machine with several fumigating zones, and the corresponding mechanical properties would be achieved by adding additives in a specified amount during the development. Another task to be solved is that, during the production of multi-layer film, a melt fracture may occur between the streams of materials with different viscosity in the moulding tool, which must be avoided. To this end, during the development, we define the processing technology parameters under which this phenomenon does not occur, so that excellent adhesion can develop between the different layers. As the second step of research and development, we produce thermoformed products that can serve as food packaging, using two experimental press airforming machines operating with moulding technology based on very different princies, developed in the first step, which are considered to be of appropriate quality. The main difference between the processing technology of the two machines is that one, the GN800 device, heats the film to be moulded with radiant heating, and the heating, moulding and cut-out are carried out in separate working phases, whereas in the case of the GN3021DX equipment operating with contact heating, these three operations are carried out in one step. These processing techniques have a very high impact on the final quality of the finished product and thus on its usability. In the case of GN3021DX using contact heating, a smaller technological shrink can be expected than in the case of the GN800 with radiant heating and several working phases, where the moulded product is the shaped product (English) / qualifier
 
point in time: 9 February 2022
Timestamp+2022-02-09T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

Revision as of 18:27, 9 February 2022

Project Q3957971 in Hungary
Language Label Description Also known as
English
Development of packaging of aluminium steam-contaminated PET from inter-production waste
Project Q3957971 in Hungary

    Statements

    0 references
    0 references
    1,599,424.24 Euro
    0.00276521 Euro
    6 December 2021
    0 references
    578,409,683 forint
    0 references
    4,638,996.352 Euro
    0.0027336256 Euro
    15 December 2021
    0 references
    1,697,012,331.299 forint
    0 references
    34.083971 percent
    0 references
    1 November 2017
    0 references
    31 October 2019
    0 references
    PRO-FORM Ipari és Kereskedelmi Korlátolt Felelősségű Társaság
    0 references
    0 references

    47°26'23.24"N, 19°18'30.06"E
    0 references
    Jelen támogatással megvalósuló kutatás-fejlesztés a metalizált PET fóliából keletkező hulladék újrahasznosítására, az újrahasznosított anyagból készült többrétegű fóliából készülő csomagolóeszköz előállítására koncentrál. A hazai PET feldolgozás a 2007 és 2013 között 38%-os növekedést mutat, amely annak köszönhető, hogy az alapanyag a kis súlya, jó gázzáró képessége és átlátszósága miatt tökéletesen megfelel csomagolástechnikai célokra. A hazai műanyag-felhasználásnak a legnagyobb hányadát közel 40%-kal a csomagolóipar teszi ki, azaz ez az iparág termeli a legtöbb műanyag hulladékot, hiszen a csomagolóanyagok becsült élettartamáról megállapítható, hogy egy éven belül csaknem 100%-a hulladék lesz. Mindezek alapján megállapítható, hogy a hazánkban és az egész világon keletkező PET hulladék anyagában történő újrahasznosítása egy minden kétséget kizáróan fontos feladat a környezetünk károsításának elkerülése és a fenntartható fejlődés eszméjének betartása érdekében. Mindamellett, hogy a metalizált PET fóliák felhasználása évről-évre növekszik, az ebből készült termékekből keletkező hulladék begyűjtése és újrahasznosítása még nem egy megoldott kérdés, ezért az ilyen hulladékok rendszerint lerakással kerülnek ártalmatlanításra, amely megoldás a legkevésbé szolgálja a fenntartható fejlődés céljait az Európai Unió hulladékkezeléssel kapcsolatos szabályozása szerint. Jelen fejlesztés ezt a hiányosságot szeretné pótolni azáltal, hogy kezdetben a saját magunk által felhalmozott, majd a későbbiekben esetleg máshol fellelhető metalizált PET hulladékot anyagában, akár élelmiszer csomagolására is alkalmas termoformázott terméként hasznosítanánk újra, jóval magasabb értéken, mint az eddig ismert eljárásokkal. A metalizált PET darálék újrahasznosításának legnagyobb hátráltatója, hogy a keletkező hulladék igen kis határviszkozitással rendelkezik, így a feldolgozáshoz ezt az értéket mindenképp emelni szükséges, valamint a metalizált jellege miatt az előállított fólia, valamint az ezekből készült termékek színe sárgás-zöldes színt mutat, amely igen csúnya összhatást kelt. A kutatás-fejlesztés első lépéseként a cégünknél az évek során keletkezett igen nagy mennyiségű metalizált PET gyártásközi hulladékot, amely darálék formájában van jelenleg összegyűjtve, fogjuk egy ikercsigás extruderekkel rendelkező többrétegű fólia gyártására alkalmas extruder sorral feldolgozni. Célunk olyan koextrudált fólia előállítása, amelyeknek a középső része, az úgynevezett maganyag legalább 50%-ban a nagy mennyiségben, jelenleg újrahasznosulatlan metalizált PET darálékból állna, a fedőréteg pedig egy fekete színű, szintén PET anyagból készült réteg lenne. Így egy, az alapanyag alacsony értéke miatt kisebb költségek mellett előállított, ám a jelenleg is használt fóliákkal megegyező mechanikai tulajdonságokkal rendelkező fóliát leszünk képesek előállítani. Ahhoz azonban, hogy ezt meg tudjuk valósítani több problémát is le kell küzdenünk. Az egyik ilyen probléma, hogy a PET hidrofil jellege miatt nedvességfelvételre hajlamos, amely nedvesség a feldolgozás során degradációt okozva, igen nagy mértékben csökkenti az elkészült fólia mechanikai tulajdonságait. Ennek elkerülése érdekében az anyagáramunkat egy infravörös kristályosító berendezésen vezetnénk keresztül, a további nedvességtartalom elvonásáról pedig a több kigázosító zónával is rendelkező extruder gép gondoskodna, a megfelelő mechanikai tulajdonságok elérését pedig ezeken felül adalékanyagok a fejlesztés során meghatározott mennyiségben történő hozzávezetésével biztosítanánk. További megoldandó feladat, hogy a többrétegű fólia előállítása során az alakadó szerszámban összevezetett eltérő viszkozitással rendelkező anyagáramok között olvadéktörés léphet fel, amelyet mindenképp el kell kerülni. Ennek érdekében a fejlesztés során meghatározzuk azokat a feldolgozástechnológiai paramétereket, amelyek mellett ez a jelenség nem lép fel, így az egyes rétegek között kiváló adhézió alakulhat ki. A kutatás-fejlesztés második lépéseként az első lépésben kifejlesztett, megfelelő minőségűnek ítélt fóliákból két, merőben eltérő princípiumokon alapuló formázási technológiával operáló kísérleti préslégformázó gép segítségével olyan termoformázott termékeket állítunk elő, amelyek akár élelmiszeripari csomagolóeszközként is szolgálhatnak. A két gép feldolgozástechnológiája között a fő eltérés, hogy míg az egyik, a GN800-as berendezés sugárzó fűtéssel melegíti fel a formázni kívánt fóliát, és a melegítés, formaadás valamint a kivágás külön munkafázisokban valósul meg, addig a kontakt fűtéssel operáló GN3021DX berendezés esetén ez a három művelet egy lépésben valósul meg. Az említett feldolgozástechnológiai módszerek igen nagy mértékben befolyásolják a késztermék végleges minőségét, így annak felhasználhatóságát. A kontakt fűtést alkalmazó GN3021DX esetében ugyanis kisebb technológiai zsugorra lehet számítani, mint a sugárzó fűtéssel és több munkafázissal operáló GN800-as esetében, ahol a formázott termék a formaadá (Hungarian)
    0 references
    Research and development with this support focuses on the recycling of waste from metalised PET film and the production of packaging material made of multi-layered film made of recycled material. Domestic PET processing shows an increase of 38 % between 2007 and 2013, due to the fact that the raw material is perfectly suited for packaging technical purposes due to its low weight, good gas-tightness and transparency. The packaging industry accounts for nearly 40 % of the domestic consumption of plastics, i.e. it produces the most plastic waste, since the estimated lifetime of packaging materials is that almost 100 % will be waste within a year. Based on the above, it can be concluded that the recycling of PET waste produced in Hungary and worldwide is an unquestionably important task in order to avoid damage to our environment and to comply with the idea of sustainable development. While the use of metallised PET films is increasing year after year, the collection and recycling of waste from these products is not yet a solved issue, and therefore such waste is usually disposed of by landfilling, which is the least serving the goals of sustainable development under the European Union legislation on waste management. The present development aims to fill this gap by reusing the metalised PET waste that we have accumulated by ourselves and which may subsequently be found elsewhere in its material, even as a thermoformed product suitable for food packaging, at a much higher value than the procedures known to date. The biggest obstacle to the recycling of metalised PET mills is the fact that the waste generated has a very limited cross-sectional dimension, so that this value must be increased for processing, and because of its metalised nature, the colour of the film produced and the products made from them show a yellowish-green colour, which produces a very nasty overall effect. As a first step in research and development, the very large amount of metalised PET inter-production waste generated by our company over the years, which is currently collected in the form of grinds, will be processed with an extruder line suitable for the production of multi-layer film with twin-twin extruders. Our aim is to produce coextruded film, the middle part of which, the so-called core material, would consist of at least 50 % of large quantities of metalised PET grindings, currently unrecycled, and the top layer would be a black layer made of PET material. Thus, we will be able to produce a film produced at less cost due to the low value of the raw material, but with the same mechanical characteristics as the foils currently used. However, in order to achieve this, we need to overcome a number of problems. One of these problems is that, due to the hydrophilic nature of PET, it is prone to moisture absorption, which causes degradation during processing to a very large extent reduces the mechanical properties of the finished film. To avoid this, our material flow would be channelled through an infrared crystallising device, and the removal of the additional moisture content would be ensured by an extruder machine with several fumigating zones, and the corresponding mechanical properties would be achieved by adding additives in a specified amount during the development. Another task to be solved is that, during the production of multi-layer film, a melt fracture may occur between the streams of materials with different viscosity in the moulding tool, which must be avoided. To this end, during the development, we define the processing technology parameters under which this phenomenon does not occur, so that excellent adhesion can develop between the different layers. As the second step of research and development, we produce thermoformed products that can serve as food packaging, using two experimental press airforming machines operating with moulding technology based on very different princies, developed in the first step, which are considered to be of appropriate quality. The main difference between the processing technology of the two machines is that one, the GN800 device, heats the film to be moulded with radiant heating, and the heating, moulding and cut-out are carried out in separate working phases, whereas in the case of the GN3021DX equipment operating with contact heating, these three operations are carried out in one step. These processing techniques have a very high impact on the final quality of the finished product and thus on its usability. In the case of GN3021DX using contact heating, a smaller technological shrink can be expected than in the case of the GN800 with radiant heating and several working phases, where the moulded product is the shaped product (English)
    9 February 2022
    0 references
    Ecser, Pest
    0 references

    Identifiers

    VEKOP-2.1.1-15-2016-00026
    0 references