Development of a new type of vertical axis wind turbine prototype (Q3929659): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed an Item: add summary)
(‎Changed an Item: Adding English translations)
Property / summary
 
A) The technical part of the aid application covers the research and development, optimisation, research and development of the generator and inverter, as well as the production of prototypes and validation of the parameters of the vertical axis wind turbine according to PCT notification WO 2009/056896. B) — Aerodynamic R & D and optimisation of a vertical-axis wind turbine shall cover the following activities: Perform analytical and simplified CFD calculations to map the impact of various geometric and other parameters. Small sample based on the results of the calculations, validation of calculations by wind tunnel experiments. Based on validated 2D and 3D CFD models, further refine geometry, in-depth analysis of flow processes, optimise the operating parameters of the turbine. Preparation and testing of the optimised turbine module with wind tunnel experiments. Based on the results of the CFD and wind tunnel experimental studies, the module is further optimised and then the prototype is produced. Outdoor measurement of the prototype. — The strength research and development and optimisation of the vertical-axis wind turbine covers the following activities: — After the first 2D CFD simulation, based on the best geometry data, the strength design of the small sample, the calculation of the wind tunnel forces on the turbine. Preparation of the manufacturing documentation of the small sample on the basis of the calculations. We plan to test the small sample up to 40 m/sec (approximately 145 km/h). During the wind tunnel check, the forces on the small sample are measured to ensure that they meet the calculated values. — Based on the final geometry obtained after the 3D CFD simulation, the 3 m high sample strength design, calculation of wind turbine forces. Based on the calculations, the production documentation of the 3 m high module is prepared. The 3 m high module is tested outdoors. — After performing the outdoor measurements, we make the appropriate modifications (corrections in the field of aerodynamic geometry), produce the second module of the prototype and consider the wind turbine strength research and development completed. — Research and development of the generator and inverter: The utilisation of wind energy is carried out within the framework of this project by means of wind turbines driven by air flowing in the horizontal direction, with wind turbine generator units connected to the electricity distribution network with vertical axis of rotation. The research and development activities carried out in connection with the generator and inverter in the framework of the project are therefore derived from the above, the aim of which is to carry out the following tasks, which will facilitate the design and construction of a power plant of the magnitude of MW in the subsequent development phases: O Examination of engine types, network interface systems, power electronic devices and topologies. o Analysis and testing of stationary and rotor designs. o Possibilities for the application of iron core and permanent magnetic materials. o Examination of coil architectures. o Analysis of cooling conditions. o Modeling, simulation and optimisation. o Multipurpose optimisation of electric machine geometry. O Critical verification. Control and evaluation of variants. EMC and diagnostic analyses. Decision on an experimental variant. o Preparation of Generator Model(s). O Execution of Electrical, Magnetic and Thermal Testing Tests in case of effects in the wind turbine and the establishment of a real-time test environment for the test of generator variant(s). O design and preparation of 1 kW,5 kW, 10 kW pilot model and network interface system. The R & D of the generator and inverter ensures the following objectives: O Optimum connection of the generator to the wind farm (low speed) o Optimum fitting of the inverter to the generator and to the wind farm (maintaining the wind turbine at optimal operating point). — The production of a vertical-axis wind turbine prototype shall cover the following activities: After the aerodynamic and strength research and optimisation of the wind turbine is completed, we design the prototype. The prototype will be a wind turbine with a nominal capacity of 10 kW. Using the 3D CFD simulation, we determine the size of the wind turbine and then design the wind turbine based on the results of the solidology research and development. Based on the completed production plans, we acquire the necessary materials, produce the developed generator and inverter and produce the prototype modules. C) Based on our previously announced PCT patent WO 2009/056896, we are developing a new type of vertical-axis wind turbine (wind power plant) that can eliminate most of the disadvantages of the current horizontal axis solutions, and also remedy the typical disadvantages and problems of vertical axis types. Thanks to the simple structural solution of our turbi, we are able to compete w... (English)
Property / summary: A) The technical part of the aid application covers the research and development, optimisation, research and development of the generator and inverter, as well as the production of prototypes and validation of the parameters of the vertical axis wind turbine according to PCT notification WO 2009/056896. B) — Aerodynamic R & D and optimisation of a vertical-axis wind turbine shall cover the following activities: Perform analytical and simplified CFD calculations to map the impact of various geometric and other parameters. Small sample based on the results of the calculations, validation of calculations by wind tunnel experiments. Based on validated 2D and 3D CFD models, further refine geometry, in-depth analysis of flow processes, optimise the operating parameters of the turbine. Preparation and testing of the optimised turbine module with wind tunnel experiments. Based on the results of the CFD and wind tunnel experimental studies, the module is further optimised and then the prototype is produced. Outdoor measurement of the prototype. — The strength research and development and optimisation of the vertical-axis wind turbine covers the following activities: — After the first 2D CFD simulation, based on the best geometry data, the strength design of the small sample, the calculation of the wind tunnel forces on the turbine. Preparation of the manufacturing documentation of the small sample on the basis of the calculations. We plan to test the small sample up to 40 m/sec (approximately 145 km/h). During the wind tunnel check, the forces on the small sample are measured to ensure that they meet the calculated values. — Based on the final geometry obtained after the 3D CFD simulation, the 3 m high sample strength design, calculation of wind turbine forces. Based on the calculations, the production documentation of the 3 m high module is prepared. The 3 m high module is tested outdoors. — After performing the outdoor measurements, we make the appropriate modifications (corrections in the field of aerodynamic geometry), produce the second module of the prototype and consider the wind turbine strength research and development completed. — Research and development of the generator and inverter: The utilisation of wind energy is carried out within the framework of this project by means of wind turbines driven by air flowing in the horizontal direction, with wind turbine generator units connected to the electricity distribution network with vertical axis of rotation. The research and development activities carried out in connection with the generator and inverter in the framework of the project are therefore derived from the above, the aim of which is to carry out the following tasks, which will facilitate the design and construction of a power plant of the magnitude of MW in the subsequent development phases: O Examination of engine types, network interface systems, power electronic devices and topologies. o Analysis and testing of stationary and rotor designs. o Possibilities for the application of iron core and permanent magnetic materials. o Examination of coil architectures. o Analysis of cooling conditions. o Modeling, simulation and optimisation. o Multipurpose optimisation of electric machine geometry. O Critical verification. Control and evaluation of variants. EMC and diagnostic analyses. Decision on an experimental variant. o Preparation of Generator Model(s). O Execution of Electrical, Magnetic and Thermal Testing Tests in case of effects in the wind turbine and the establishment of a real-time test environment for the test of generator variant(s). O design and preparation of 1 kW,5 kW, 10 kW pilot model and network interface system. The R & D of the generator and inverter ensures the following objectives: O Optimum connection of the generator to the wind farm (low speed) o Optimum fitting of the inverter to the generator and to the wind farm (maintaining the wind turbine at optimal operating point). — The production of a vertical-axis wind turbine prototype shall cover the following activities: After the aerodynamic and strength research and optimisation of the wind turbine is completed, we design the prototype. The prototype will be a wind turbine with a nominal capacity of 10 kW. Using the 3D CFD simulation, we determine the size of the wind turbine and then design the wind turbine based on the results of the solidology research and development. Based on the completed production plans, we acquire the necessary materials, produce the developed generator and inverter and produce the prototype modules. C) Based on our previously announced PCT patent WO 2009/056896, we are developing a new type of vertical-axis wind turbine (wind power plant) that can eliminate most of the disadvantages of the current horizontal axis solutions, and also remedy the typical disadvantages and problems of vertical axis types. Thanks to the simple structural solution of our turbi, we are able to compete w... (English) / rank
 
Normal rank
Property / summary: A) The technical part of the aid application covers the research and development, optimisation, research and development of the generator and inverter, as well as the production of prototypes and validation of the parameters of the vertical axis wind turbine according to PCT notification WO 2009/056896. B) — Aerodynamic R & D and optimisation of a vertical-axis wind turbine shall cover the following activities: Perform analytical and simplified CFD calculations to map the impact of various geometric and other parameters. Small sample based on the results of the calculations, validation of calculations by wind tunnel experiments. Based on validated 2D and 3D CFD models, further refine geometry, in-depth analysis of flow processes, optimise the operating parameters of the turbine. Preparation and testing of the optimised turbine module with wind tunnel experiments. Based on the results of the CFD and wind tunnel experimental studies, the module is further optimised and then the prototype is produced. Outdoor measurement of the prototype. — The strength research and development and optimisation of the vertical-axis wind turbine covers the following activities: — After the first 2D CFD simulation, based on the best geometry data, the strength design of the small sample, the calculation of the wind tunnel forces on the turbine. Preparation of the manufacturing documentation of the small sample on the basis of the calculations. We plan to test the small sample up to 40 m/sec (approximately 145 km/h). During the wind tunnel check, the forces on the small sample are measured to ensure that they meet the calculated values. — Based on the final geometry obtained after the 3D CFD simulation, the 3 m high sample strength design, calculation of wind turbine forces. Based on the calculations, the production documentation of the 3 m high module is prepared. The 3 m high module is tested outdoors. — After performing the outdoor measurements, we make the appropriate modifications (corrections in the field of aerodynamic geometry), produce the second module of the prototype and consider the wind turbine strength research and development completed. — Research and development of the generator and inverter: The utilisation of wind energy is carried out within the framework of this project by means of wind turbines driven by air flowing in the horizontal direction, with wind turbine generator units connected to the electricity distribution network with vertical axis of rotation. The research and development activities carried out in connection with the generator and inverter in the framework of the project are therefore derived from the above, the aim of which is to carry out the following tasks, which will facilitate the design and construction of a power plant of the magnitude of MW in the subsequent development phases: O Examination of engine types, network interface systems, power electronic devices and topologies. o Analysis and testing of stationary and rotor designs. o Possibilities for the application of iron core and permanent magnetic materials. o Examination of coil architectures. o Analysis of cooling conditions. o Modeling, simulation and optimisation. o Multipurpose optimisation of electric machine geometry. O Critical verification. Control and evaluation of variants. EMC and diagnostic analyses. Decision on an experimental variant. o Preparation of Generator Model(s). O Execution of Electrical, Magnetic and Thermal Testing Tests in case of effects in the wind turbine and the establishment of a real-time test environment for the test of generator variant(s). O design and preparation of 1 kW,5 kW, 10 kW pilot model and network interface system. The R & D of the generator and inverter ensures the following objectives: O Optimum connection of the generator to the wind farm (low speed) o Optimum fitting of the inverter to the generator and to the wind farm (maintaining the wind turbine at optimal operating point). — The production of a vertical-axis wind turbine prototype shall cover the following activities: After the aerodynamic and strength research and optimisation of the wind turbine is completed, we design the prototype. The prototype will be a wind turbine with a nominal capacity of 10 kW. Using the 3D CFD simulation, we determine the size of the wind turbine and then design the wind turbine based on the results of the solidology research and development. Based on the completed production plans, we acquire the necessary materials, produce the developed generator and inverter and produce the prototype modules. C) Based on our previously announced PCT patent WO 2009/056896, we are developing a new type of vertical-axis wind turbine (wind power plant) that can eliminate most of the disadvantages of the current horizontal axis solutions, and also remedy the typical disadvantages and problems of vertical axis types. Thanks to the simple structural solution of our turbi, we are able to compete w... (English) / qualifier
 
point in time: 8 February 2022
Timestamp+2022-02-08T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

Revision as of 21:11, 8 February 2022

Project Q3929659 in Hungary
Language Label Description Also known as
English
Development of a new type of vertical axis wind turbine prototype
Project Q3929659 in Hungary

    Statements

    0 references
    0 references
    169,860,000 forint
    0 references
    469,698.57 Euro
    0.00276521 Euro
    3 December 2021
    0 references
    784,241.394 Euro
    0.0027336256 Euro
    15 December 2021
    0 references
    286,886,907.175 forint
    0 references
    59.207575 percent
    0 references
    1 October 2017
    0 references
    30 September 2019
    0 references
    WINDCRAFT Development Kereskedelmi és Szolgáltató Korlátolt Felelősségű Társaság
    0 references
    0 references

    46°51'43.70"N, 20°33'7.74"E
    0 references
    A) A támogatási kérelem szakmai része a WO 2009/056896 számú PCT bejelentés szerinti függőleges tengelyű szélerőmű aerodinamikai és szilárdságtani kutatás-fejlesztését, optimalizálását, a generátor és inverter kutatás-fejlesztését, valamint a prototípus legyártását és paramétereinek hitelesítését foglalja magában. B) - A függőleges tengelyű szélerőmű aerodinamikai kutatás-fejlesztése és optimalizálása a következő tevékenységeket takarja: Analitikus és egyszerűsített CFD számítások végzése a különféle geometriai és egyéb paraméterek hatásának feltérképezésére. A számítások eredményei alapján kisminta készítése, a számítások validálása szélcsatorna kísérletekkel. A validált 2D és 3D CFD modellek alapján a geometria további finomítása, az áramlási folyamatok részletes vizsgálata, a turbina operatív paramétereinek optimalizálása. Az optimalizált turbina modul elkészítése, vizsgálata szélcsatorna kísérletekkel. A CFD és szélcsatorna kísérleti vizsgálatok eredményei alapján a modul további optimalizálása, majd a prototípus elkészítése. A prototípus szabadtéri mérése. - A függőleges tengelyű szélturbina szilárdságtani kutatás-fejlesztése és optimalizálása a következő tevékenységeket takarja: - Az első 2D CFD szimuláció után a legjobbnak bizonyuló geometria adatok alapján a kisminta szilárdságtani tervezése, a turbinára szélcsatornában ható erők számítása. A számítások alapján a kisminta gyártási dokumentációjának elkészítése. A kisminta tesztelését 40 m/sec sebességig (kb. 145 km/óra) tervezzük. A szélcsatornás ellenőrzés során mérjük a kismintára ható erőket, hogy azok megfelelnek-e a számított értékeknek. - A 3D CFD szimuláció után kapott végleges geometria alapján a 3m magas kisminta szilárdságtani tervezése, a szélturbinára ható erők számítása. A számítások alapján a 3m magas modul gyártási dokumentációjának elkészítése. A 3m magas modul tesztelését kültéren végezzük. - A kültéri mérések elvégzése után végrehajtjuk a megfelelő módosításokat (korrekciókat az aerodinamikai geometria terén), legyártjuk a prototípus második modulját és a szélturbina szilárdságtani kutatás-fejlesztését befejezettnek tekintjük. - A generátor és inverter kutatás-fejlesztése: A szélenergia hasznosítása jelen projekt keretén belül a vízszintes irányban áramló levegővel hajtott szélturbinák segítségével valósul meg, a villamos elosztóhálózatra kapcsolódó függőleges forgástengelyű szélturbina-generátor egységekkel. A projekt keretében a generátorral és inverterrel kapcsolatban végzett kutatás-fejlesztési tevékenység tehát a fent leírtakból adódik, melynek során a következő feladatok elvégzése a cél, ami a későbbi fejlesztési szakaszokban egy MW nagyságrendű erőmű tervezését és megépíthetőségét segíti elő: o Lehetséges motortípusok, hálózati illesztő rendszerek, teljesítményelektronikai eszközök és topológiák vizsgálata. o Álló és forgórész kialakítások elemzése, vizsgálata. o Vasmag és állandó mágneses anyagok alkalmazásának lehetőségei. o Tekercselési architektúrák vizsgálata. o Hűtési viszonyok elemzése. o Modellezés, szimuláció és optimalizálás. o Villamos gép geometriájának többcélú optimalizációja. o Kritikai ellenőrzés. Variánsok ellenőrzése, értékelése. EMC és diagnosztikai elemzések. Döntés egy kísérleti variánsról. o Generátormodell(ek) elkészítése. o Villamos, mágneses és termikus vizsgálatok elvégzése különböző a szélerőműben előforduló hatások esetére és valósidejű tesztkörnyezet kialakítása a generátor variáns(ok) vizsgálatára. o 1 kW,5 kW, 10 kW-os kísérleti modell és hálózati illesztő rendszer tervezése és elkészítése. A generátor és inverter kutatás-fejlesztése a következő célok elérését biztosítja: o A generátor optimális illesztése a szélerőműhöz (alacsony fordulatszám) o Az inverter optimális illesztése a generátorhoz és a szélerőműhöz (a szélerőmű optimális munkaponton tartása). - A függőleges tengelyű szélerőmű prototípusának legyártása a következő tevékenységeket takarja: A szélerőmű aerodinamikai és szilárdságtani kutatás-fejlesztése és optimalizálásának befejezése után megtervezzük a prototípust. A prototípus egy 10 kW néveges teljesítményű szélerőmű lesz. A 3D CFD szimulációval meghatározzuk a szélerőmű méreteit, majd a szilárdságtani kutatás-fejlesztés eredményei alapján megtervezzük a szélerőművet. Az elkészült gyártási tervek alapján beszerezzük a szükséges anyagokat, legyártatjuk a kifejlesztett generátort és invertert és legyártatjuk a prototípus moduljait. C) A korábban bejelentett, WO 2009/056896 számú PCT szabadalmunk alapján fejlesztünk egy új típusú, függőleges tengelyű szélturbinát (szélerőművet), amely képes kiküszöbölni a jelenlegi vízszintes tengelyű megoldások legtöbb hátrányát, továbbá a függőleges tengelyű típusok jellemző hátrányait és problémáit is orvosolja. A turbinánk egyszerű szerkezeti megoldásának köszönhetően képesek vagyunk versenyezni a jelenleg a piacon található összes egyéb konstrukcióval. Először a kis szélerőművek piacára szeretnénk belépni 3 és 50kW között mé (Hungarian)
    0 references
    A) The technical part of the aid application covers the research and development, optimisation, research and development of the generator and inverter, as well as the production of prototypes and validation of the parameters of the vertical axis wind turbine according to PCT notification WO 2009/056896. B) — Aerodynamic R & D and optimisation of a vertical-axis wind turbine shall cover the following activities: Perform analytical and simplified CFD calculations to map the impact of various geometric and other parameters. Small sample based on the results of the calculations, validation of calculations by wind tunnel experiments. Based on validated 2D and 3D CFD models, further refine geometry, in-depth analysis of flow processes, optimise the operating parameters of the turbine. Preparation and testing of the optimised turbine module with wind tunnel experiments. Based on the results of the CFD and wind tunnel experimental studies, the module is further optimised and then the prototype is produced. Outdoor measurement of the prototype. — The strength research and development and optimisation of the vertical-axis wind turbine covers the following activities: — After the first 2D CFD simulation, based on the best geometry data, the strength design of the small sample, the calculation of the wind tunnel forces on the turbine. Preparation of the manufacturing documentation of the small sample on the basis of the calculations. We plan to test the small sample up to 40 m/sec (approximately 145 km/h). During the wind tunnel check, the forces on the small sample are measured to ensure that they meet the calculated values. — Based on the final geometry obtained after the 3D CFD simulation, the 3 m high sample strength design, calculation of wind turbine forces. Based on the calculations, the production documentation of the 3 m high module is prepared. The 3 m high module is tested outdoors. — After performing the outdoor measurements, we make the appropriate modifications (corrections in the field of aerodynamic geometry), produce the second module of the prototype and consider the wind turbine strength research and development completed. — Research and development of the generator and inverter: The utilisation of wind energy is carried out within the framework of this project by means of wind turbines driven by air flowing in the horizontal direction, with wind turbine generator units connected to the electricity distribution network with vertical axis of rotation. The research and development activities carried out in connection with the generator and inverter in the framework of the project are therefore derived from the above, the aim of which is to carry out the following tasks, which will facilitate the design and construction of a power plant of the magnitude of MW in the subsequent development phases: O Examination of engine types, network interface systems, power electronic devices and topologies. o Analysis and testing of stationary and rotor designs. o Possibilities for the application of iron core and permanent magnetic materials. o Examination of coil architectures. o Analysis of cooling conditions. o Modeling, simulation and optimisation. o Multipurpose optimisation of electric machine geometry. O Critical verification. Control and evaluation of variants. EMC and diagnostic analyses. Decision on an experimental variant. o Preparation of Generator Model(s). O Execution of Electrical, Magnetic and Thermal Testing Tests in case of effects in the wind turbine and the establishment of a real-time test environment for the test of generator variant(s). O design and preparation of 1 kW,5 kW, 10 kW pilot model and network interface system. The R & D of the generator and inverter ensures the following objectives: O Optimum connection of the generator to the wind farm (low speed) o Optimum fitting of the inverter to the generator and to the wind farm (maintaining the wind turbine at optimal operating point). — The production of a vertical-axis wind turbine prototype shall cover the following activities: After the aerodynamic and strength research and optimisation of the wind turbine is completed, we design the prototype. The prototype will be a wind turbine with a nominal capacity of 10 kW. Using the 3D CFD simulation, we determine the size of the wind turbine and then design the wind turbine based on the results of the solidology research and development. Based on the completed production plans, we acquire the necessary materials, produce the developed generator and inverter and produce the prototype modules. C) Based on our previously announced PCT patent WO 2009/056896, we are developing a new type of vertical-axis wind turbine (wind power plant) that can eliminate most of the disadvantages of the current horizontal axis solutions, and also remedy the typical disadvantages and problems of vertical axis types. Thanks to the simple structural solution of our turbi, we are able to compete w... (English)
    8 February 2022
    0 references
    Szarvas, Békés
    0 references

    Identifiers

    GINOP-2.1.7-15-2016-00601
    0 references