NEMO: the Next Move in Movement Disorders (Q3988812): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed an Item: Fixing dateand country)
(‎Changed an Item: Fixing summary)
Property / summary
 
Op dit moment worden patiënten met hyperkinetische bewegingsstoornissen geclassificeerd op basis van expert opinie. Hierbij wordt in sommige gevallen gebruik gemaakt van elektromyografie (EMG). De classificatie is dus voornamelijk gebaseerd op klinische beoordeling. Het beoordelen van het type hyperkinetische bewegingsstoornis is complex omdat er kleine nuances tussen ziektebeelden zitten en patienten meerdere stoornissen kunnen hebben. Daarbij komt dat de mens haar observatie vanuit een holitische wijze doet en dus altijd naar de samenhang kijkt van hetgeen wordt geobserveerd. Voor een goede classificatie en diagnose van hyperkinetische bewegingsstoornissen is juist een objectieve waarneming van (delen van) het lichaam essentieel. Het gaat hierbij om de frequentie van bewegingen van bijvoorbeeld de bovenarm, de hoeken waaronder dit gebeurt en (on)willekeur. Het gevolg van dit alles is dat de juiste classificatie en diagnose van bewegingsstoornissen momenteel een Kappa-waarde, een maat die gebruik wordt om de overeenstemming tussen de specialisten weer te geven, kent van gemiddeld 0,5 tot 0,6. Dit betekent dat de kans relatief groot is dat een verkeerde diagnose wordt gedaan, een verkeerde behandeling wordt gestart en daarmee de doelmatigheid van de Nederlandse zorg niet optimaal is.ZiuZ en UMCG willen in dit project onderzoek doen naar hoe kunstmatige intelligentie bij kan dragen aan het verbeteren van de classificatie en diagnose met als doel om deze te verhogen tot tenminste 0,8 en daarmee het aantal ‘foutieve’ behandeling verlaagd. Het doel van dit project is daarom de ontwikkeling van een eerste ‘proof of principle’ van een Computer aided diagnose tool (CAD-tool) dat de diagnostisering, behandeling en evaluatie van natuurlijk verloop van hyperkinetische bewegingsstoornissen moet verbeteren en waarbij gebruik wordt gemaakt van meerdere databronnen (video/sensoren/medische informatie). De projectresultaten zouden vervolgens ook toegepast kunnen worden op bv. Parkinson-onderzoek, hetgeen raakvlakken heeft met tremoren. (Dutch)
Property / summary: Op dit moment worden patiënten met hyperkinetische bewegingsstoornissen geclassificeerd op basis van expert opinie. Hierbij wordt in sommige gevallen gebruik gemaakt van elektromyografie (EMG). De classificatie is dus voornamelijk gebaseerd op klinische beoordeling. Het beoordelen van het type hyperkinetische bewegingsstoornis is complex omdat er kleine nuances tussen ziektebeelden zitten en patienten meerdere stoornissen kunnen hebben. Daarbij komt dat de mens haar observatie vanuit een holitische wijze doet en dus altijd naar de samenhang kijkt van hetgeen wordt geobserveerd. Voor een goede classificatie en diagnose van hyperkinetische bewegingsstoornissen is juist een objectieve waarneming van (delen van) het lichaam essentieel. Het gaat hierbij om de frequentie van bewegingen van bijvoorbeeld de bovenarm, de hoeken waaronder dit gebeurt en (on)willekeur. Het gevolg van dit alles is dat de juiste classificatie en diagnose van bewegingsstoornissen momenteel een Kappa-waarde, een maat die gebruik wordt om de overeenstemming tussen de specialisten weer te geven, kent van gemiddeld 0,5 tot 0,6. Dit betekent dat de kans relatief groot is dat een verkeerde diagnose wordt gedaan, een verkeerde behandeling wordt gestart en daarmee de doelmatigheid van de Nederlandse zorg niet optimaal is.ZiuZ en UMCG willen in dit project onderzoek doen naar hoe kunstmatige intelligentie bij kan dragen aan het verbeteren van de classificatie en diagnose met als doel om deze te verhogen tot tenminste 0,8 en daarmee het aantal ‘foutieve’ behandeling verlaagd. Het doel van dit project is daarom de ontwikkeling van een eerste ‘proof of principle’ van een Computer aided diagnose tool (CAD-tool) dat de diagnostisering, behandeling en evaluatie van natuurlijk verloop van hyperkinetische bewegingsstoornissen moet verbeteren en waarbij gebruik wordt gemaakt van meerdere databronnen (video/sensoren/medische informatie). De projectresultaten zouden vervolgens ook toegepast kunnen worden op bv. Parkinson-onderzoek, hetgeen raakvlakken heeft met tremoren. (Dutch) / rank
 
Normal rank

Revision as of 14:10, 14 December 2021

Project Q3988812 in Netherlands
Language Label Description Also known as
English
NEMO: the Next Move in Movement Disorders
Project Q3988812 in Netherlands

    Statements

    0 references
    2,370,129.0 Euro
    0 references
    6,261,899.604 Euro
    0 references
    37.85 percent
    0 references
    1 January 2018
    0 references
    20 February 2022
    0 references
    Universitair Medisch Centrum Groningen (UMCG)
    0 references
    Q3985026 (Deleted Item)
    0 references

    53°13'19.56"N, 6°34'34.28"E
    0 references
    9713GZ
    0 references
    8400 AA
    0 references
    8400 AC
    0 references
    Op dit moment worden patiënten met hyperkinetische bewegingsstoornissen geclassificeerd op basis van expert opinie. Hierbij wordt in sommige gevallen gebruik gemaakt van elektromyografie (EMG). De classificatie is dus voornamelijk gebaseerd op klinische beoordeling. Het beoordelen van het type hyperkinetische bewegingsstoornis is complex omdat er kleine nuances tussen ziektebeelden zitten en patienten meerdere stoornissen kunnen hebben. Daarbij komt dat de mens haar observatie vanuit een holitische wijze doet en dus altijd naar de samenhang kijkt van hetgeen wordt geobserveerd. Voor een goede classificatie en diagnose van hyperkinetische bewegingsstoornissen is juist een objectieve waarneming van (delen van) het lichaam essentieel. Het gaat hierbij om de frequentie van bewegingen van bijvoorbeeld de bovenarm, de hoeken waaronder dit gebeurt en (on)willekeur. Het gevolg van dit alles is dat de juiste classificatie en diagnose van bewegingsstoornissen momenteel een Kappa-waarde, een maat die gebruik wordt om de overeenstemming tussen de specialisten weer te geven, kent van gemiddeld 0,5 tot 0,6. Dit betekent dat de kans relatief groot is dat een verkeerde diagnose wordt gedaan, een verkeerde behandeling wordt gestart en daarmee de doelmatigheid van de Nederlandse zorg niet optimaal is.ZiuZ en UMCG willen in dit project onderzoek doen naar hoe kunstmatige intelligentie bij kan dragen aan het verbeteren van de classificatie en diagnose met als doel om deze te verhogen tot tenminste 0,8 en daarmee het aantal ‘foutieve’ behandeling verlaagd. Het doel van dit project is daarom de ontwikkeling van een eerste ‘proof of principle’ van een Computer aided diagnose tool (CAD-tool) dat de diagnostisering, behandeling en evaluatie van natuurlijk verloop van hyperkinetische bewegingsstoornissen moet verbeteren en waarbij gebruik wordt gemaakt van meerdere databronnen (video/sensoren/medische informatie). De projectresultaten zouden vervolgens ook toegepast kunnen worden op bv. Parkinson-onderzoek, hetgeen raakvlakken heeft met tremoren. (Dutch)
    0 references

    Identifiers

    OP-2014-2023-Noord-OPSNN0193
    0 references