GEOMETRIA, MECHANICS AND CLASSIC FIELD THEORY (Q3145225): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Created claim: summary (P836): CE PROJET EST BASÉ SUR L’INTERRELATION ENTRE LES GÉOMÉTRES, LA MÉCANIQUE ET LA THÉORIE CLASSIQUE DES CHAMPS. D’UNE PART, LA MÉCANIQUE GÉOMÉTRIQUE EST BASÉE SUR L’UTILISATION D’OUTILS DE GÉOMÉTRIE DIFFÉRENTIELLE DANS DIVERS PROBLÈMES DÉCOULANT DE LA MÉCANIQUE CLASSIQUE. DANS CETTE DIRECTION, UN OBJECTIF EST D’ÉTUDIER DIVERS ASPECTS LIÉS À L’INTÉGRITÉ DES ÉQUATIONS DE HAMILTON, COMME LA THÉORIE DE HAMILTON JACOBI OU LA RELATION AVEC LES GROUPES DE...)
(‎Changed label, description and/or aliases in de, and other parts: Adding German translations)
label / delabel / de
 
GEOMETRIA, MECHANIK UND KLASSISCHE FELDTHEORIE
Property / summary
 
DIESES PROJEKT BASIERT AUF DER WECHSELWIRKUNG ZWISCHEN GEOMETRIA, MECHANIK UND KLASSISCHER FELDTHEORIE. AUF DER EINEN SEITE BASIEREN GEOMETRISCHE MECHANIK AUF DEM EINSATZ VON DIFFERENTIALGEOMETRIENWERKZEUGEN IN VERSCHIEDENEN PROBLEMEN, DIE SICH AUS DER KLASSISCHEN MECHANIK ERGEBEN. IN DIESER RICHTUNG IST EIN ZIEL, VERSCHIEDENE ASPEKTE ZU UNTERSUCHEN, DIE MIT DER INTEGRIERBARKEIT VON HAMILTON-GLEICHUNGEN ZUSAMMENHÄNGEN, WIE DIE HAMILTON JACOBI-THEORIE ODER DIE BEZIEHUNG ZU LÜGE POISSON’S-GRUPPEN. IN ANWESENHEIT VON NICHT-HOLONOMAS LIGATUREN WIRD EIN WERKZEUG, DAS WIR IN BETRACHT ZIEHEN, DIE HAMILTONISATION DES ENTSPRECHENDEN NICHT-HOLONOMO-SYSTEMS SEIN. AUF DER ANDEREN SEITE, WENN WIR NICHT WISSEN, WIE MAN BEWEGUNGSGLEICHUNGEN INTEGRIERT, IST DIE ENTWICKLUNG VON GEOMETRISCHEN INTEGRATOREN EIN LEISTUNGSFÄHIGES WERKZEUG, UM DIE DYNAMIK DES SYSTEMS ANZUNÄHERN. _x000D_ _x000D_ nicht NUR KLASISCHE MECHANICAL ist nicht von Ihrer RELATION an die GEOMETRY. Von Fecho, beabsichtigen wir, eine neue CANONICAL GEOMETRIC-Formulierung der kLASischen Theorie der CAMPOS zu geben, die die GEOMETRIA AFIN._x000D_ _x000D_reciprocaly, Geometrien diversas HAN BEEN INTRODUCED BY YOUR PAPEL AS TOOL DES CLASISCHE MECHANICAL, SINO Tambien DE LA QANTICA, TERMODINAMICA, GEOMETRIA OF INFORMATIONEN.... DIES IST DER FALL VON SIMPLECTICA, POISSON, KONTAKTGEOMETRIEN, KAHLER.EINE UNSERER ZIELE IST ES, EINE GEEIGNETE KOMBINATION VON KAHLER- UND POISSON-GEOMETRIEN ZU UNTERSUCHEN, DIE UNS ZUM BEGRIFF UND STUDIUM VON POISSON-KAHLER-RÄUMEN FÜHREN SOLLTE. EIN WEITERES GEOMETRISCHES OBJEKT, DAS IN DIESEM FALL MIT VOLLSTÄNDIG INTEGRIERBAREN SYSTEMEN VERBUNDEN IST, IST LAGRANGIAN FASERN. WIR WERDEN FIBERD-SIMPLECTICS-AKTIONEN ZU DIESER ART VON OBJEKT UNTERSUCHEN. SCHLIESSLICH WOLLEN WIR AUFGRUND IHRER BEZIEHUNG ZUR THERMODYNAMIK UND NOCH NEUEREN BEREICHEN, WIE DER INFORMATIONSGEOMETRIE UND NEUROGEOMETRIA, DIE BEZIEHUNG ZWISCHEN DIESEN THEMEN UND DER GEOMETRIA DES KONTAKTS UNTERSUCHEN. DIESE LETZTEN ASPEKTE STELLEN EINE SONDIERUNGSLINIE DAR, VON DER WIR HOFFEN, DASS SIE IN KÜNFTIGEN PROJEKTEN KONSOLIDIERT WERDEN. (German)
Property / summary: DIESES PROJEKT BASIERT AUF DER WECHSELWIRKUNG ZWISCHEN GEOMETRIA, MECHANIK UND KLASSISCHER FELDTHEORIE. AUF DER EINEN SEITE BASIEREN GEOMETRISCHE MECHANIK AUF DEM EINSATZ VON DIFFERENTIALGEOMETRIENWERKZEUGEN IN VERSCHIEDENEN PROBLEMEN, DIE SICH AUS DER KLASSISCHEN MECHANIK ERGEBEN. IN DIESER RICHTUNG IST EIN ZIEL, VERSCHIEDENE ASPEKTE ZU UNTERSUCHEN, DIE MIT DER INTEGRIERBARKEIT VON HAMILTON-GLEICHUNGEN ZUSAMMENHÄNGEN, WIE DIE HAMILTON JACOBI-THEORIE ODER DIE BEZIEHUNG ZU LÜGE POISSON’S-GRUPPEN. IN ANWESENHEIT VON NICHT-HOLONOMAS LIGATUREN WIRD EIN WERKZEUG, DAS WIR IN BETRACHT ZIEHEN, DIE HAMILTONISATION DES ENTSPRECHENDEN NICHT-HOLONOMO-SYSTEMS SEIN. AUF DER ANDEREN SEITE, WENN WIR NICHT WISSEN, WIE MAN BEWEGUNGSGLEICHUNGEN INTEGRIERT, IST DIE ENTWICKLUNG VON GEOMETRISCHEN INTEGRATOREN EIN LEISTUNGSFÄHIGES WERKZEUG, UM DIE DYNAMIK DES SYSTEMS ANZUNÄHERN. _x000D_ _x000D_ nicht NUR KLASISCHE MECHANICAL ist nicht von Ihrer RELATION an die GEOMETRY. Von Fecho, beabsichtigen wir, eine neue CANONICAL GEOMETRIC-Formulierung der kLASischen Theorie der CAMPOS zu geben, die die GEOMETRIA AFIN._x000D_ _x000D_reciprocaly, Geometrien diversas HAN BEEN INTRODUCED BY YOUR PAPEL AS TOOL DES CLASISCHE MECHANICAL, SINO Tambien DE LA QANTICA, TERMODINAMICA, GEOMETRIA OF INFORMATIONEN.... DIES IST DER FALL VON SIMPLECTICA, POISSON, KONTAKTGEOMETRIEN, KAHLER.EINE UNSERER ZIELE IST ES, EINE GEEIGNETE KOMBINATION VON KAHLER- UND POISSON-GEOMETRIEN ZU UNTERSUCHEN, DIE UNS ZUM BEGRIFF UND STUDIUM VON POISSON-KAHLER-RÄUMEN FÜHREN SOLLTE. EIN WEITERES GEOMETRISCHES OBJEKT, DAS IN DIESEM FALL MIT VOLLSTÄNDIG INTEGRIERBAREN SYSTEMEN VERBUNDEN IST, IST LAGRANGIAN FASERN. WIR WERDEN FIBERD-SIMPLECTICS-AKTIONEN ZU DIESER ART VON OBJEKT UNTERSUCHEN. SCHLIESSLICH WOLLEN WIR AUFGRUND IHRER BEZIEHUNG ZUR THERMODYNAMIK UND NOCH NEUEREN BEREICHEN, WIE DER INFORMATIONSGEOMETRIE UND NEUROGEOMETRIA, DIE BEZIEHUNG ZWISCHEN DIESEN THEMEN UND DER GEOMETRIA DES KONTAKTS UNTERSUCHEN. DIESE LETZTEN ASPEKTE STELLEN EINE SONDIERUNGSLINIE DAR, VON DER WIR HOFFEN, DASS SIE IN KÜNFTIGEN PROJEKTEN KONSOLIDIERT WERDEN. (German) / rank
 
Normal rank
Property / summary: DIESES PROJEKT BASIERT AUF DER WECHSELWIRKUNG ZWISCHEN GEOMETRIA, MECHANIK UND KLASSISCHER FELDTHEORIE. AUF DER EINEN SEITE BASIEREN GEOMETRISCHE MECHANIK AUF DEM EINSATZ VON DIFFERENTIALGEOMETRIENWERKZEUGEN IN VERSCHIEDENEN PROBLEMEN, DIE SICH AUS DER KLASSISCHEN MECHANIK ERGEBEN. IN DIESER RICHTUNG IST EIN ZIEL, VERSCHIEDENE ASPEKTE ZU UNTERSUCHEN, DIE MIT DER INTEGRIERBARKEIT VON HAMILTON-GLEICHUNGEN ZUSAMMENHÄNGEN, WIE DIE HAMILTON JACOBI-THEORIE ODER DIE BEZIEHUNG ZU LÜGE POISSON’S-GRUPPEN. IN ANWESENHEIT VON NICHT-HOLONOMAS LIGATUREN WIRD EIN WERKZEUG, DAS WIR IN BETRACHT ZIEHEN, DIE HAMILTONISATION DES ENTSPRECHENDEN NICHT-HOLONOMO-SYSTEMS SEIN. AUF DER ANDEREN SEITE, WENN WIR NICHT WISSEN, WIE MAN BEWEGUNGSGLEICHUNGEN INTEGRIERT, IST DIE ENTWICKLUNG VON GEOMETRISCHEN INTEGRATOREN EIN LEISTUNGSFÄHIGES WERKZEUG, UM DIE DYNAMIK DES SYSTEMS ANZUNÄHERN. _x000D_ _x000D_ nicht NUR KLASISCHE MECHANICAL ist nicht von Ihrer RELATION an die GEOMETRY. Von Fecho, beabsichtigen wir, eine neue CANONICAL GEOMETRIC-Formulierung der kLASischen Theorie der CAMPOS zu geben, die die GEOMETRIA AFIN._x000D_ _x000D_reciprocaly, Geometrien diversas HAN BEEN INTRODUCED BY YOUR PAPEL AS TOOL DES CLASISCHE MECHANICAL, SINO Tambien DE LA QANTICA, TERMODINAMICA, GEOMETRIA OF INFORMATIONEN.... DIES IST DER FALL VON SIMPLECTICA, POISSON, KONTAKTGEOMETRIEN, KAHLER.EINE UNSERER ZIELE IST ES, EINE GEEIGNETE KOMBINATION VON KAHLER- UND POISSON-GEOMETRIEN ZU UNTERSUCHEN, DIE UNS ZUM BEGRIFF UND STUDIUM VON POISSON-KAHLER-RÄUMEN FÜHREN SOLLTE. EIN WEITERES GEOMETRISCHES OBJEKT, DAS IN DIESEM FALL MIT VOLLSTÄNDIG INTEGRIERBAREN SYSTEMEN VERBUNDEN IST, IST LAGRANGIAN FASERN. WIR WERDEN FIBERD-SIMPLECTICS-AKTIONEN ZU DIESER ART VON OBJEKT UNTERSUCHEN. SCHLIESSLICH WOLLEN WIR AUFGRUND IHRER BEZIEHUNG ZUR THERMODYNAMIK UND NOCH NEUEREN BEREICHEN, WIE DER INFORMATIONSGEOMETRIE UND NEUROGEOMETRIA, DIE BEZIEHUNG ZWISCHEN DIESEN THEMEN UND DER GEOMETRIA DES KONTAKTS UNTERSUCHEN. DIESE LETZTEN ASPEKTE STELLEN EINE SONDIERUNGSLINIE DAR, VON DER WIR HOFFEN, DASS SIE IN KÜNFTIGEN PROJEKTEN KONSOLIDIERT WERDEN. (German) / qualifier
 
point in time: 9 December 2021
Timestamp+2021-12-09T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

Revision as of 07:56, 9 December 2021

Project Q3145225 in Spain
Language Label Description Also known as
English
GEOMETRIA, MECHANICS AND CLASSIC FIELD THEORY
Project Q3145225 in Spain

    Statements

    0 references
    16,558.85 Euro
    0 references
    19,481.0 Euro
    0 references
    85.0 percent
    0 references
    1 January 2019
    0 references
    31 December 2021
    0 references
    UNIVERSIDAD DE LA LAGUNA
    0 references

    28°29'8.77"N, 16°18'57.38"W
    0 references
    38023
    0 references
    ESTE PROYECTO SE BASA EN LA INTERRELACION ENTRE LA GEOMETRIA, LA MECANICA Y LA TEORIA CLASICA DE CAMPOS. POR UN LADO, LA MECANICA GEOMETRICA SE BASA EN EL USO DE HERRAMIENTAS DE LA GEOMETRIA DIFERENCIAL EN DISTINTOS PROBLEMAS PROCEDENTES DE LA MECANICA CLASICA. EN ESTA DIRECCION, UN OBJETIVO ES ESTUDIAR DIVERSOS ASPECTOS RELACIONADOS CON LA INTEGRABILIDAD DE LAS ECUACIONES DE HAMILTON, COMO SON LA TEORIA DE HAMILTON JACOBI O LA RELACION CON LOS GRUPOS DE LIE POISSON. EN PRESENCIA DE LIGADURAS NO-HOLONOMAS, UNA HERRAMIENTA QUE CONSIDERAREMOS SERA LA HAMILTONIZACION DEL CORRESPONDIENTE SISTEMA NO-HOLONOMO. POR OTRA PARTE, CUANDO NO SABEMOS COMO INTEGRAR LAS ECUACIONES DE MOVIMIENTO, EL DESARROLLO DE INTEGRADORES GEOMETRICOS ES UNA HERRAMIENTA POTENTE PARA APROXIMAR LA DINAMICA DEL SISTEMA. _x000D_ _x000D_ NO SOLO LA MECANICA CLASICA SE NUTRE DE SU RELACION CON LA GEOMETRIA. DE HECHO, PRETENDEMOS DAR UNA NUEVA FORMULACION GEOMETRICA CANONICA DE LA TEORIA CLASICA DE CAMPOS UTILIZANDO LA GEOMETRIA AFIN._x000D_ _x000D_ RECIPROCAMENTE, DIVERSAS GEOMETRIAS HAN SIDO INTRODUCIDAS POR SU PAPEL COMO HERRAMIENTA NO SOLO DE LA MECANICA CLASICA, SINO TAMBIEN DE LA CUANTICA, TERMODINAMICA, GEOMETRIA DE LA INFORMACION.... ESTE ES EL CASO DE LA GEOMETRIA SIMPLECTICA, DE POISSON, DE CONTACTO, KAHLER¿ UNO DE NUESTROS OBJETIVOS ES INVESTIGAR SOBRE UNA ADECUADA COMBINACION DE LA GEOMETRIA KAHLER Y DE POISSON QUE NOS DEBERIA CONDUCIR A LA NOCION Y EL ESTUDIO DE LOS ESPACIOS POISSON-KAHLER. OTRO OBJETO GEOMETRICO, RELACIONADO EN ESTE CASO CON LOS SISTEMAS COMPLETAMENTE INTEGRABLES, SON LAS FIBRACIONES LAGRANGIANAS. ESTUDIAREMOS LAS ACCIONES SIMPLECTICAS FIBRADAS SOBRE ESTE TIPO DE OBJETOS. FINALMENTE, DEBIDO A SU RELACION CON LA TERMODINAMICA E INCLUSO CON AREAS MAS NOVEDOSAS, COMO LA GEOMETRIA DE LA INFORMACION Y LA NEUROGEOMETRIA, QUEREMOS ESTUDIAR LA RELACION EXISTENTE ENTRE ESTOS TEMAS Y LA GEOMETRIA DE CONTACTO. ESTOS ULTIMOS ASPECTOS CONSTITUYEN UNA LINEA EXPLORATORIA QUE ESPERAMOS SE CONSOLIDE EN FUTUROS PROYECTOS. (Spanish)
    0 references
    THIS PROJECT IS BASED ON THE INTERTWINING BETWEEN GEOMETRY, MECHANICS AND CLASSICAL FIELD THEORIES. ON ONE HAND, GEOMETRIC MECHANICS IS GROUNDED IN THE USE OF TOOLS FROM DIFFERENTIAL GEOMETRY IN DIFFERENT PROBLEMS COMING FROM CLASSICAL MECHANICS. IN THIS DIRECTION, AN OBJECTIVE IS TO STUDY SEVERAL ASPECTS RELATED TO THE INTEGRABILITY OF HAMILTON EQUATIONS, SUCH AS HAMILTON-JACOBI THEORY OR THE RELATION WITH LIE POISSON GROUPS. IN THE PRESENCE OF NONHOLONOMIC CONSTRAINTS, A TOOL TO BE CONSIDERED IS THE HAMILTONIZATION OF THE CORRESPONDING NONHOLONOMIC SYSTEM. ON THE OTHER HAND, WHEN IT IS NOT KNOWN HOW TO INTEGRATE THE EQUATIONS OF MOVEMENT, THE DEVELOPMENT OF GEOMETRIC INTEGRATORS IS A POWERFUL TOOL TO APPROXIMATE THE DYNAMICS OF THE SYSTEM._x000D_ _x000D_ NOT ONLY CLASSICAL MECHANICS IS NOURISHED FROM ITS RELATION WITH GEOMETRY. INDEED, WE PRETEND TO GIVE A NEW CANONICAL GEOMETRIC FORMULATION OF THE CLASSICAL FIELD THEORY USING AFFINE GEOMETRY. _x000D_ _x000D_ CONVERSELY, SEVERAL GEOMETRIES HAVE BEEN INTRODUCED DUE TO ITS ROLE AS A TOOL, NOT ONLY IN CLASSICAL MECHANICS, BUT ALSO QUANTUM MECHANICS, THERMODYNAMICS, INFORMATION GEOMETRY... THIS IS THE CASE OF SYMPLECTIC GEOMETRY, POISSON GEOMETRY, CONTACT GEOMETRY, KAHLER... ONE OF OUR PURPOSES IS TO INVESTIGATE ABOUT A POSSIBLE COMBINATION OF KAHLER AND POISSON GEOMETRY WHICH SHOULD LEAD US TO THE NOTION AND STUDY OF POISSON-KAHLER SPACES. ANOTHER GEOMETRIC OBJECT, RELATED IN THIS CASE WITH COMPLETELY INTEGRABLE SYSTEMS, ARE LAGRANGIAN FIBRATIONS. WE WILL STUDY FIBERED SYMPLECTIC ACTIONS ON THIS TYPE OF OBJECTS. FINALLY, DUE TO ITS RELATION WITH THERMODYNAMICS AND OTHER MORE INNOVATIVE AREAS, SUCH AS INFORMATION GEOMETRY AND NEUROGEOMETRY, WE WOULD LIKE TO STUDY THE EXISTING RELATION BETWEEN THESE TOPICS AND CONTACT GEOMETRY. THESE LAST ASPECTS CONSTITUTE AN EXPLORATORY LINE WHICH WE HOPE WILL BE CONSOLIDATED IN FUTURE PROJECTS. (English)
    0 references
    CE PROJET EST BASÉ SUR L’INTERRELATION ENTRE LES GÉOMÉTRES, LA MÉCANIQUE ET LA THÉORIE CLASSIQUE DES CHAMPS. D’UNE PART, LA MÉCANIQUE GÉOMÉTRIQUE EST BASÉE SUR L’UTILISATION D’OUTILS DE GÉOMÉTRIE DIFFÉRENTIELLE DANS DIVERS PROBLÈMES DÉCOULANT DE LA MÉCANIQUE CLASSIQUE. DANS CETTE DIRECTION, UN OBJECTIF EST D’ÉTUDIER DIVERS ASPECTS LIÉS À L’INTÉGRITÉ DES ÉQUATIONS DE HAMILTON, COMME LA THÉORIE DE HAMILTON JACOBI OU LA RELATION AVEC LES GROUPES DE POISSON. EN PRÉSENCE DE LIGATURES NON-HOLONOMAS, UN OUTIL QUE NOUS CONSIDÉRERONS SERA L’HAMILTONISATION DU SYSTÈME CORRESPONDANT NON-HOLONOMO. D’AUTRE PART, QUAND NOUS NE SAVONS PAS INTÉGRER LES ÉQUATIONS DE MOUVEMENT, LE DÉVELOPPEMENT D’INTÉGRATEURS GÉOMÉTRIQUES EST UN OUTIL PUISSANT POUR RAPPROCHER LA DYNAMIQUE DU SYSTÈME. _x000D_ _x000D_ non seulement CLASIC MECHANICAL EST NUTRE DE VOTRE RELATION À LA GEOMETRY. De Fecho, nous avons l’intention de donner une nouvelle FORMULATION GEOMETRIC CANONIQUE DU Théorie CLASIQUE DES CAMPOS UTILISANT LA GÉOMETRIA AFIN._x000D_ _x000D_reciprocaly, geometries diversas HAN BEEN INTRODUCED PAR VOTRE PAPEL comme OUTIL DU MÉCÉNICAL CLASIQUE, SINO Tambien DE LA QANTICA, TERMODINAMICA, GEOMETRIA D’INFORMATION.... C’EST LE CAS DE SIMPLECTICA, POISSON, DES GÉOMÉTRIES DE CONTACT, KAHLER.UN DE NOS OBJECTIFS EST D’ÉTUDIER UNE COMBINAISON APPROPRIÉE DE GÉOMÉTRIES DE KAHLER ET DE POISSON QUI DEVRAIT NOUS CONDUIRE À LA NOTION ET À L’ÉTUDE DES ESPACES POISSON-KAHLER. UN AUTRE OBJET GÉOMÉTRIQUE, LIÉ DANS CE CAS À DES SYSTÈMES ENTIÈREMENT INTÉGRABLES, EST LES FIBRES LAGRANGIENNES. NOUS ÉTUDIERONS LES ACTIONS FIBERD SIMPLECTICS SUR CE TYPE D’OBJET. ENFIN, EN RAISON DE SA RELATION AVEC LA THERMODYNAMIQUE ET DES DOMAINES ENCORE PLUS NOUVEAUX, TELS QUE LES GÉOMÉTRES DE L’INFORMATION ET NEUROGEOMETRIA, NOUS VOULONS ÉTUDIER LA RELATION ENTRE CES SUJETS ET LES GÉOMÉTRES DE CONTACT. CES DERNIERS ASPECTS CONSTITUENT UNE LIGNE EXPLORATOIRE QUI, NOUS L’ESPÉRONS, SERA CONSOLIDÉE DANS LES PROJETS FUTURS. (French)
    2 December 2021
    0 references
    DIESES PROJEKT BASIERT AUF DER WECHSELWIRKUNG ZWISCHEN GEOMETRIA, MECHANIK UND KLASSISCHER FELDTHEORIE. AUF DER EINEN SEITE BASIEREN GEOMETRISCHE MECHANIK AUF DEM EINSATZ VON DIFFERENTIALGEOMETRIENWERKZEUGEN IN VERSCHIEDENEN PROBLEMEN, DIE SICH AUS DER KLASSISCHEN MECHANIK ERGEBEN. IN DIESER RICHTUNG IST EIN ZIEL, VERSCHIEDENE ASPEKTE ZU UNTERSUCHEN, DIE MIT DER INTEGRIERBARKEIT VON HAMILTON-GLEICHUNGEN ZUSAMMENHÄNGEN, WIE DIE HAMILTON JACOBI-THEORIE ODER DIE BEZIEHUNG ZU LÜGE POISSON’S-GRUPPEN. IN ANWESENHEIT VON NICHT-HOLONOMAS LIGATUREN WIRD EIN WERKZEUG, DAS WIR IN BETRACHT ZIEHEN, DIE HAMILTONISATION DES ENTSPRECHENDEN NICHT-HOLONOMO-SYSTEMS SEIN. AUF DER ANDEREN SEITE, WENN WIR NICHT WISSEN, WIE MAN BEWEGUNGSGLEICHUNGEN INTEGRIERT, IST DIE ENTWICKLUNG VON GEOMETRISCHEN INTEGRATOREN EIN LEISTUNGSFÄHIGES WERKZEUG, UM DIE DYNAMIK DES SYSTEMS ANZUNÄHERN. _x000D_ _x000D_ nicht NUR KLASISCHE MECHANICAL ist nicht von Ihrer RELATION an die GEOMETRY. Von Fecho, beabsichtigen wir, eine neue CANONICAL GEOMETRIC-Formulierung der kLASischen Theorie der CAMPOS zu geben, die die GEOMETRIA AFIN._x000D_ _x000D_reciprocaly, Geometrien diversas HAN BEEN INTRODUCED BY YOUR PAPEL AS TOOL DES CLASISCHE MECHANICAL, SINO Tambien DE LA QANTICA, TERMODINAMICA, GEOMETRIA OF INFORMATIONEN.... DIES IST DER FALL VON SIMPLECTICA, POISSON, KONTAKTGEOMETRIEN, KAHLER.EINE UNSERER ZIELE IST ES, EINE GEEIGNETE KOMBINATION VON KAHLER- UND POISSON-GEOMETRIEN ZU UNTERSUCHEN, DIE UNS ZUM BEGRIFF UND STUDIUM VON POISSON-KAHLER-RÄUMEN FÜHREN SOLLTE. EIN WEITERES GEOMETRISCHES OBJEKT, DAS IN DIESEM FALL MIT VOLLSTÄNDIG INTEGRIERBAREN SYSTEMEN VERBUNDEN IST, IST LAGRANGIAN FASERN. WIR WERDEN FIBERD-SIMPLECTICS-AKTIONEN ZU DIESER ART VON OBJEKT UNTERSUCHEN. SCHLIESSLICH WOLLEN WIR AUFGRUND IHRER BEZIEHUNG ZUR THERMODYNAMIK UND NOCH NEUEREN BEREICHEN, WIE DER INFORMATIONSGEOMETRIE UND NEUROGEOMETRIA, DIE BEZIEHUNG ZWISCHEN DIESEN THEMEN UND DER GEOMETRIA DES KONTAKTS UNTERSUCHEN. DIESE LETZTEN ASPEKTE STELLEN EINE SONDIERUNGSLINIE DAR, VON DER WIR HOFFEN, DASS SIE IN KÜNFTIGEN PROJEKTEN KONSOLIDIERT WERDEN. (German)
    9 December 2021
    0 references
    San Cristóbal de La Laguna
    0 references

    Identifiers

    PGC2018-098265-B-C32
    0 references