Identification of chromatin factors affecting meiotic crossover formation in plants (Q84329): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Removed claim: financed by (P890): Directorate-General for Regional and Urban Policy (Q8361), Removing unnecessary financed by statement)
(‎Changed label, description and/or aliases in fr: translated_label)
label / frlabel / fr
 
Identification des facteurs de chromatine affectant la formation de croisement méiotique chez les plantes

Revision as of 16:33, 30 November 2021

Project Q84329 in Poland
Language Label Description Also known as
English
Identification of chromatin factors affecting meiotic crossover formation in plants
Project Q84329 in Poland

    Statements

    0 references
    3,499,750.0 zloty
    0 references
    839,940.0 Euro
    13 January 2020
    0 references
    3,499,750.0 zloty
    0 references
    839,940.0 Euro
    13 January 2020
    0 references
    100.0 percent
    0 references
    1 December 2018
    0 references
    30 November 2021
    0 references
    UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU
    0 references
    Q2513981 (Deleted Item)
    0 references
    Meiotic crossover is a fundamental process that unlocks and generates genetic diversity and is therefore an important substrate for crop breeding. In this proposal, we seek to characterize the chromatin factors controlling meiotic crossover in plant genomes. First, we will develop a new approach which will allow us to study selected crossover hotspots in Arabidopsis with high resolution. This will be based on recombinant seed sorting with fluorescent reporters and successive sequencing of crossover-containing intervals. Next, we will directly test effects of two types of chromatin modification on crossover distribution: histone H3 trimethylation at lysine 4 (H3K4me3), and histone H4 acetylation. For this purpose, we will target histone modifying enzymes to crossover hotspots within our intervals by CRISPR/dCas9 system. This project will lead to new discoveries on the crossover control and will pave a way to generate artificial recombination hotspots for modern plant breeding. (Polish)
    0 references
    Meiotic crossover is a fundamental process that unlocks and generates genetic diversity and is therefore an important substrate for crop breeding. In this proposal, we seek to characterise the chromatin factors controlling meiotic crossover in plant genomes. First, we will develop a new approach which will allow us to study selected crossover hotspots in Arabidopsis with high resolution. This will be based on recombinant seed sorting with fluorescent Reporters and successive sequencing of crossover-containing intervals. Next, we will directly test effects of two types of chromatin modification on crossover distribution: histone H3 trimethylation at lysine 4 (H3K4me3), and histone H4 acetylation. For this purpose, we will target histone modifying enzymes to crossover hotspots within our intervals by CRISPR/dCas9 system. This project will lead to new discoveries on the crossover control and will pave a way to generate artificial recombination hotspots for modern plant breeding. (English)
    14 October 2020
    0 references

    Identifiers

    POIR.04.04.00-00-5C0F/17
    0 references