Q3184457 (Q3184457): Difference between revisions
Jump to navigation
Jump to search
(Changed an Item: Edited by the materialized bot - inferring region from the coordinates) |
(Created claim: summary (P836): The study of the vibratory dynamic behaviour of railway bridges has gained special prominence since the construction of the first high-speed lines. This is because the running of trains above 200 km/h introduces high excitation frequencies, capable of causing resonance phenomena._x000D_ _x000D_ According to the above, dynamic tests should be performed at speeds close to the resonance speed, which would be the most unfavorable situation in terms...) |
||||||||||||||
Property / summary | |||||||||||||||
The study of the vibratory dynamic behaviour of railway bridges has gained special prominence since the construction of the first high-speed lines. This is because the running of trains above 200 km/h introduces high excitation frequencies, capable of causing resonance phenomena._x000D_ _x000D_ According to the above, dynamic tests should be performed at speeds close to the resonance speed, which would be the most unfavorable situation in terms of dynamic response of the structure. However, the maximum constant speed that can be achieved, taking into account the conditions existing during the load tests for the reception of works (including the safety requirements to be respected), is normally between 60 and 100 km/h. These speeds will most often be far from the resonant speeds, which could be close to the maximum speed of the line._x000D_ _x000D_ With the development of this project TELICE and INSERAIL aim to carry out an innovative technological solution capable of facilitating and addressing the needs identified in the study of vibration behaviour. To this end, it will carry out the development of an exciting system to induce vibrations on railway bridges that allows the application of a series of techniques of analysis of the aforementioned dynamic behaviour of railway bridges (FFCC), while supplementing much of the limitations and shortcomings of the methods currently available. From a technical point of view, it is therefore a question of producing the first prototype of a system capable of improving the safety, functionality and knowledge of the evolution over time (conservation) of FFCC bridges, based on the application of experimental analysis technologies superior to those currently used in the railway field. (English) | |||||||||||||||
Property / summary: The study of the vibratory dynamic behaviour of railway bridges has gained special prominence since the construction of the first high-speed lines. This is because the running of trains above 200 km/h introduces high excitation frequencies, capable of causing resonance phenomena._x000D_ _x000D_ According to the above, dynamic tests should be performed at speeds close to the resonance speed, which would be the most unfavorable situation in terms of dynamic response of the structure. However, the maximum constant speed that can be achieved, taking into account the conditions existing during the load tests for the reception of works (including the safety requirements to be respected), is normally between 60 and 100 km/h. These speeds will most often be far from the resonant speeds, which could be close to the maximum speed of the line._x000D_ _x000D_ With the development of this project TELICE and INSERAIL aim to carry out an innovative technological solution capable of facilitating and addressing the needs identified in the study of vibration behaviour. To this end, it will carry out the development of an exciting system to induce vibrations on railway bridges that allows the application of a series of techniques of analysis of the aforementioned dynamic behaviour of railway bridges (FFCC), while supplementing much of the limitations and shortcomings of the methods currently available. From a technical point of view, it is therefore a question of producing the first prototype of a system capable of improving the safety, functionality and knowledge of the evolution over time (conservation) of FFCC bridges, based on the application of experimental analysis technologies superior to those currently used in the railway field. (English) / rank | |||||||||||||||
Normal rank | |||||||||||||||
Property / summary: The study of the vibratory dynamic behaviour of railway bridges has gained special prominence since the construction of the first high-speed lines. This is because the running of trains above 200 km/h introduces high excitation frequencies, capable of causing resonance phenomena._x000D_ _x000D_ According to the above, dynamic tests should be performed at speeds close to the resonance speed, which would be the most unfavorable situation in terms of dynamic response of the structure. However, the maximum constant speed that can be achieved, taking into account the conditions existing during the load tests for the reception of works (including the safety requirements to be respected), is normally between 60 and 100 km/h. These speeds will most often be far from the resonant speeds, which could be close to the maximum speed of the line._x000D_ _x000D_ With the development of this project TELICE and INSERAIL aim to carry out an innovative technological solution capable of facilitating and addressing the needs identified in the study of vibration behaviour. To this end, it will carry out the development of an exciting system to induce vibrations on railway bridges that allows the application of a series of techniques of analysis of the aforementioned dynamic behaviour of railway bridges (FFCC), while supplementing much of the limitations and shortcomings of the methods currently available. From a technical point of view, it is therefore a question of producing the first prototype of a system capable of improving the safety, functionality and knowledge of the evolution over time (conservation) of FFCC bridges, based on the application of experimental analysis technologies superior to those currently used in the railway field. (English) / qualifier | |||||||||||||||
point in time: 12 October 2021
|
Revision as of 19:14, 12 October 2021
Project Q3184457 in Spain
Language | Label | Description | Also known as |
---|---|---|---|
English | No label defined |
Project Q3184457 in Spain |
Statements
461,213.0 Euro
0 references
922,426.0 Euro
0 references
50.0 percent
0 references
18 July 2016
0 references
30 June 2018
0 references
TELEFONOS LINEAS Y CENTRALES, S.A.
0 references
24162
0 references
El estudio del comportamiento dinámico vibratorio de los puentes de ferrocarril ha cobrado especial protagonismo desde la construcción de las primeras líneas de Alta Velocidad. Ello es debido a que la circulación de trenes por encima de los 200 km/h introduce frecuencias de excitación elevadas, capaces de provocar fenómenos de resonancia ._x000D_ _x000D_ De acuerdo con lo anterior, las pruebas dinámicas deberían realizarse a velocidades cercanas a la velocidad de resonancia, que sería la situación más desfavorable en cuanto a respuesta dinámica de la estructura. Sin embargo, la máxima velocidad constante que es posible alcanzar, teniendo en cuenta las condiciones existentes durante las pruebas de carga de recepción de obra (entre ellas las exigencias de seguridad que deben respetarse), está normalmente entre los 60 y los 100 km/h. Estas velocidades estarán en la mayoría de las ocasiones lejos de las velocidades resonantes, que podrían ser cercanas a la velocidad máxima de la línea._x000D_ _x000D_ Con el desarrollo de este proyecto TELICE e INSERAIL pretenden llevar a cabo una solución tecnológica innovadora capaz de facilitar y subsanar las necesidades identificadas en el estudio del comportamiento vibratorio. Para ello, llevará a cabo el desarrollo de un sistema excitador para inducir vibraciones en puentes ferroviarios que permita aplicar una serie de técnicas de análisis del mencionado comportamiento dinámico de los puentes de ferrocarril (FFCC), supliendo a la vez gran parte de las limitaciones y carencias de los métodos disponibles actualmente. Desde el punto de vista técnico, se trata, por tanto, de fabricar el primer prototipo de un sistema capaz de mejorar la seguridad, funcionalidad y el conocimiento de la evolución en el tiempo (conservación) de los puentes de FFCC, basándose para ello en la aplicación de tecnologías de análisis experimental superiores a las que hoy en día se emplean en el campo ferroviario. (Spanish)
0 references
The study of the vibratory dynamic behaviour of railway bridges has gained special prominence since the construction of the first high-speed lines. This is because the running of trains above 200 km/h introduces high excitation frequencies, capable of causing resonance phenomena._x000D_ _x000D_ According to the above, dynamic tests should be performed at speeds close to the resonance speed, which would be the most unfavorable situation in terms of dynamic response of the structure. However, the maximum constant speed that can be achieved, taking into account the conditions existing during the load tests for the reception of works (including the safety requirements to be respected), is normally between 60 and 100 km/h. These speeds will most often be far from the resonant speeds, which could be close to the maximum speed of the line._x000D_ _x000D_ With the development of this project TELICE and INSERAIL aim to carry out an innovative technological solution capable of facilitating and addressing the needs identified in the study of vibration behaviour. To this end, it will carry out the development of an exciting system to induce vibrations on railway bridges that allows the application of a series of techniques of analysis of the aforementioned dynamic behaviour of railway bridges (FFCC), while supplementing much of the limitations and shortcomings of the methods currently available. From a technical point of view, it is therefore a question of producing the first prototype of a system capable of improving the safety, functionality and knowledge of the evolution over time (conservation) of FFCC bridges, based on the application of experimental analysis technologies superior to those currently used in the railway field. (English)
12 October 2021
0 references
Santovenia de la Valdoncina
0 references
Identifiers
IDI-20161133
0 references