Analysis of inequalities in colorectal cancer screening from the production of an individual socio-economic level index (Q3147165): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Created claim: summary (P836): The aim is to analyse inequalities in the Programme for the Prevention of Colorectal Cancer (PPCCR) of the Valencian Community (CV) based on the elaboration of an index of socioeconomic status (NSE). First, an NSE index will be compiled from the information of the Population Information System (SIP) of the CV through the Integrated Segmented Population Analysis (APSI) code using as Gold Standard the Social Class variable of the Valencian Communi...)
(‎Changed label, description and/or aliases in en: translated_label)
label / enlabel / en
 
Analysis of inequalities in colorectal cancer screening from the production of an individual socio-economic level index

Revision as of 15:06, 12 October 2021

Project Q3147165 in Spain
Language Label Description Also known as
English
Analysis of inequalities in colorectal cancer screening from the production of an individual socio-economic level index
Project Q3147165 in Spain

    Statements

    0 references
    18,500.0 Euro
    0 references
    37,000.0 Euro
    0 references
    50.0 percent
    0 references
    1 January 2019
    0 references
    31 March 2022
    0 references
    FUNDACION PARA EL FOMENTO DE LA INV. SANITARIA Y BIOMEDICA DE LA COMUNIDAD VALENCIANA (FISABIO)
    0 references
    0 references

    39°28'10.96"N, 0°22'34.82"W
    0 references
    46250
    0 references
    Se pretende analizar las desigualdades en el Programa de Prevención del Cáncer Colorrectal (PPCCR) de la Comunitat Valenciana (CV) a partir de la elaboración de un índice de nivel socioeconómico (NSE). En primer lugar se elaborará un índice de NSE a partir de la información del Sistema de Información Poblacional (SIP) de la CV a través del código de Análisis Poblacional Segmentado Integrado (APSI) utilizando como Gold Estándar la variable Clase Social de la Encuesta de Salud de la Comunitat Valenciana (ESCV). Población de estudio: hombres y mujeres entre 45-79 años participantes en la ESCV en 2016 (n=1687). Se obtendrán modelos de predicción de regresión logísitica multinomial estratificados por sexo. La variable respuesta será la Clase Social y las explicativas las variables del APSI. En segundo lugar se utilizará este índice para analizar las desigualdades en el PPCCR. Para ello se realizará un estudio observacional transversal dirigido a hombres y mujeres entre 50 y 69 años invitados a participar en el PPCCR de la CV entre 2014 y 2016 (n aproximada 1000000). Se utilizarán modelos de regresión logística (nivel de confianza de 95%), para analizar la relación entre las variables respuesta (participación, adherencia, tasa detección y tiempos de demora), y las explicativas (índice de NSE y el índice de privación MEDEA) ajustado por edad, país de origen y departamento de salud. Los modelos se ajustarán para el total de la población y estratificado por sexo y edad. (Spanish)
    0 references
    The aim is to analyse inequalities in the Programme for the Prevention of Colorectal Cancer (PPCCR) of the Valencian Community (CV) based on the elaboration of an index of socioeconomic status (NSE). First, an NSE index will be compiled from the information of the Population Information System (SIP) of the CV through the Integrated Segmented Population Analysis (APSI) code using as Gold Standard the Social Class variable of the Valencian Community Health Survey (ESCV). Study population: men and women between 45 and 79 years of age participating in the ESCV in 2016 (n=1687). Multinomial logistic regression prediction models stratified by sex will be obtained. The answer variable will be the Social Class and the explanatory variables the APSI variables. Second, this index will be used to analyse inequalities in the RCP. To this end, a cross-sectional observational study will be carried out for men and women between 50 and 69 years old invited to participate in the CV’s CPCCR between 2014 and 2016 (approximately 1000000). Logistic regression models (95 % confidence level) will be used to analyse the relationship between response variables (participation, adherence, detection rate and delay times), and explanatory variables (NSE index and MEDEA deprivation index) adjusted by age, country of origin and health department. The models shall be adjusted for the total population and stratified by sex and age. (English)
    12 October 2021
    0 references
    Valencia
    0 references

    Identifiers

    PI18_01669
    0 references