Data science for Finance — alignment of Finance and Accounting for the WEI in Lublin with the socio-economic needs and RSI of the Lubelskie province. (Q92371): Difference between revisions
Jump to navigation
Jump to search
(Changed an Item: Label in wikidata changed) |
(Created claim: summary (P836): The aim of the project “Data science for Finance — adaptation of Finance and Accounting for the WEI in Lublin to the socio-economic needs and RSI of the Lubelskie province” is to adapt to the socio-economic needs of the education programme for Finance and to the accounts of WEI in Lublin and to involve employers in the implementation by 09.2020. the project covers the following:activities involving employers in the preparation and implementation...) |
||
Property / summary | |||
The aim of the project “Data science for Finance — adaptation of Finance and Accounting for the WEI in Lublin to the socio-economic needs and RSI of the Lubelskie province” is to adapt to the socio-economic needs of the education programme for Finance and to the accounts of WEI in Lublin and to involve employers in the implementation by 09.2020. the project covers the following:activities involving employers in the preparation and implementation of the programme in response to socio-economic needs.The project is aimed at 45 (M-17/K-28).Date of science in finance.Project tasks:By a team of teachers and employers to develop for the management of the specialty, teaching and other activities resulting from the involvement of employers in the implementation of the project.Involving employers in the teaching process will make it possible to improve training programmes and make the course more attractive.The training offer will be adapted to the requirements of the labour market.The project is in line with the Regional Innovation Strategy for Lubelskie.A selective development model is based on smart specialisations, which are defined as the development of R & D and innovation activities that strengthen the endogenous development potential of the region.One of them is information technology.This is known as “special support”.The date of science, the date of mining, the big data analysis and the business intelligence is the competences of the computer science sector, in order to obtain the additional practical and practical value in a project faced with the social sciences and financial sector of the undertaking. (English) | |||
Property / summary: The aim of the project “Data science for Finance — adaptation of Finance and Accounting for the WEI in Lublin to the socio-economic needs and RSI of the Lubelskie province” is to adapt to the socio-economic needs of the education programme for Finance and to the accounts of WEI in Lublin and to involve employers in the implementation by 09.2020. the project covers the following:activities involving employers in the preparation and implementation of the programme in response to socio-economic needs.The project is aimed at 45 (M-17/K-28).Date of science in finance.Project tasks:By a team of teachers and employers to develop for the management of the specialty, teaching and other activities resulting from the involvement of employers in the implementation of the project.Involving employers in the teaching process will make it possible to improve training programmes and make the course more attractive.The training offer will be adapted to the requirements of the labour market.The project is in line with the Regional Innovation Strategy for Lubelskie.A selective development model is based on smart specialisations, which are defined as the development of R & D and innovation activities that strengthen the endogenous development potential of the region.One of them is information technology.This is known as “special support”.The date of science, the date of mining, the big data analysis and the business intelligence is the competences of the computer science sector, in order to obtain the additional practical and practical value in a project faced with the social sciences and financial sector of the undertaking. (English) / rank | |||
Normal rank |
Revision as of 10:51, 4 March 2020
Project in Poland financed by DG Regio
Language | Label | Description | Also known as |
---|---|---|---|
English | Data science for Finance — alignment of Finance and Accounting for the WEI in Lublin with the socio-economic needs and RSI of the Lubelskie province. |
Project in Poland financed by DG Regio |
Statements
198,679.57 zloty
0 references
235,737.5 zloty
0 references
84.28 percent
0 references
1 June 2017
0 references
30 September 2020
0 references
WYŻSZA SZKOŁA EKONOMII I INNOWACJI W LUBLINIE
0 references
Celem projektu „Data science w finansach - dostosowanie kierunku Finanse i Rachunkowość WSEI w Lublinie do potrzeb społeczno-gospodarczych i RSI woj. lubelskiego” jest dostosowanie do potrzeb społeczno-gospodarczych programu kształcenia na kierunku Finanse i rachunkowość WSEI w Lublinie oraz włączenie pracodawców w jego realizację do 09.2020 r. Projekt obejmuje swoim zakresem: działania włączające pracodawców w przygotowanie programu i jego realizację w odpowiedzi na potrzeby społeczno-gospodarcze. Projekt jest skierowany do 45 st.(M-17/K-28). z nowego naboru 2017/2018, obejmuje swym działaniem cały cykl kształcenia na studiach I st. kierunku Finanse i rachunkowość st. niestacjonarnych kierunku Finanse i rachunkowość I st. na nowoutworzonej specjalności: Data science w finansach. Zadania realizowane w projekcie: Opracowanie przez zespół dydaktyków i pracodawców nowoutworzonej na potrzeby gospodarki specjalności, Dydaktyka i działania wynikające z zaangażowania pracodawców w realizację projektu. Włączenie pracodawców do procesu dydaktycznego pozwoli udoskonalić programy kształcenia i podniesie atrakcyjność kierunku. Oferta kształcenia będzie dostosowana do wymogów rynku pracy. Projekt jest zgodny z Regionalną Strategią Innowacji woj. lubelskiego. Selektywny model rozwoju oparty jest na inteligentnych specjalizacjach rozumianych jako rozwój tych obszarów działalności badawczo-rozwojowej i innowacyjnej, które wzmacniają endogeniczne potencjały rozwojowe regionu. Jedną z nich jest informatyka. Jest to tzw. specjalizacja wspomagająca. Data science, data mining, analiza big data oraz business intelligence to kompetencje przynależne dziedzinie informatyki, dla uzyskania dodatkowej wartości praktycznej i aplikacyjnej w ramach projektu skonfrontowane z obszarem nauk społecznych i finansami przedsiębiorstwa. (Polish)
0 references
The aim of the project “Data science for Finance — adaptation of Finance and Accounting for the WEI in Lublin to the socio-economic needs and RSI of the Lubelskie province” is to adapt to the socio-economic needs of the education programme for Finance and to the accounts of WEI in Lublin and to involve employers in the implementation by 09.2020. the project covers the following:activities involving employers in the preparation and implementation of the programme in response to socio-economic needs.The project is aimed at 45 (M-17/K-28).Date of science in finance.Project tasks:By a team of teachers and employers to develop for the management of the specialty, teaching and other activities resulting from the involvement of employers in the implementation of the project.Involving employers in the teaching process will make it possible to improve training programmes and make the course more attractive.The training offer will be adapted to the requirements of the labour market.The project is in line with the Regional Innovation Strategy for Lubelskie.A selective development model is based on smart specialisations, which are defined as the development of R & D and innovation activities that strengthen the endogenous development potential of the region.One of them is information technology.This is known as “special support”.The date of science, the date of mining, the big data analysis and the business intelligence is the competences of the computer science sector, in order to obtain the additional practical and practical value in a project faced with the social sciences and financial sector of the undertaking. (English)
0 references
Identifiers
POWR.03.01.00-00-N041/16
0 references