Polarity Engineering in Nitride Heterostructures (Q84349): Difference between revisions
Jump to navigation
Jump to search
(Removed claim: financed by (P890): Directorate-General for Regional and Urban Policy (Q8361), Removing unnecessary financed by statement) |
(Changed label, description and/or aliases in fr: translated_label) |
||
label / fr | label / fr | ||
Ingénierie de polarité en Nitride Heterostructures |
Revision as of 16:25, 30 November 2021
Project Q84349 in Poland
Language | Label | Description | Also known as |
---|---|---|---|
English | Polarity Engineering in Nitride Heterostructures |
Project Q84349 in Poland |
Statements
798,555.0 zloty
0 references
798,555.0 zloty
0 references
100.0 percent
0 references
1 October 2018
0 references
30 September 2020
0 references
INSTYTUT WYSOKICH CIŚNIEŃ POLSKIEJ AKADEMII NAUK
0 references
The project focuses on nitride vertical devices with inverted built-in polarization fields in structures grown on Ga-polar GaN substrates. To build such devices we will exploit unique features of n-p tunnel junctions (TJ). Growth of n-p TJ preceding the active region of the device allows to incorporate the active region within the p-n configuration rather than the commonly used n-p one. This results in an inverted built-in electric field direction inside the active region. Additionally, such devices will profit from having the n-type layer on the top. We will show that both features can lead to new applications of light emitting devices, laser diodes and transistors. Unique capabilities of the plasma-assisted molecular beam epitaxy system (high growth rate nitrogen plasma source, high Mg flux cell and Ge doping) installed in Warsaw will be crucial for samples growth. Project will be carried out in collaboration with groups at Cornell University and Wroclaw University of Technology. (Polish)
0 references
The project focuses on Nitride vertical devices with inverted built-in polarisation fields in structures grown on Ga-polar GaN substrates. To build such devices we will exploit unique features of n-p tunnel junctions (TJ). Growth of n-p TJ preceding the active region of the device allows to Incorporate the active region within the p-n configuration rather than the commonly used n-p one. This results in an inverted built-in electric field direction inside the active region. Additionally, such devices will profit from having the n-type layer on the top. We will show that both features can lead to new applications of light emitting devices, laser diodes and transistors. Unique capabilities of the plasma-assisted molecular beam epitaxy system (high growth rate nitrogen plasma source, high Mg flux cell and Ge doping) installed in Warsaw will be crucial for samples growth. Project will be carried out in collaboration with groups at Cornell University and Wroclaw University of Technology. (English)
14 October 2020
0 references
Identifiers
POIR.04.04.00-00-5D5B/18
0 references