Advanced gas turbine blade manufacturing technologies, automatic polishing and 3D printing (Q78883): Difference between revisions
Jump to navigation
Jump to search
(Removed claim: summary (P836): Reference_reference_programme_aids:SA.41471 (2015/X) _public:Article 25 of Commission Regulation (EC) No 651/2014 of 17 June 2014 declaring certain categories of aid compatible with the internal market in the application of Article 107 and 108 of the Treaty (OJ(OJ LEU L 187/1, 26.06.2014), demonstration of air motor turbine blades using modern 3D printing and machining.These methods are an alternative to costly precision casting in aero gas tu...) |
(Created claim: summary (P836): Reference number of the aid programme: SA.41471(2015/X) Purpose of public aid: Article 25 of EC Regulation No 651/2014 of 17 June 2014 declaring certain types of aid compatible with the internal market in the application of Articles 107 and 108 of the Treaty (OJ L. I'm sorry. EU L 187/1 of 26.06.2014),The project will include demonstrations of air-engine turbine blades using modern 3D printing and machining methods. These methods are an alternat...) |
||||||||||||||
Property / summary | |||||||||||||||
Reference number of the aid programme: SA.41471(2015/X) Purpose of public aid: Article 25 of EC Regulation No 651/2014 of 17 June 2014 declaring certain types of aid compatible with the internal market in the application of Articles 107 and 108 of the Treaty (OJ L. I'm sorry. EU L 187/1 of 26.06.2014),The project will include demonstrations of air-engine turbine blades using modern 3D printing and machining methods. These methods are an alternative to the costly precision casting process in the vacuum of aircraft engine blades. The project will make a model of the turbine blade CAD model based on the actual part. Carrying out industrial tests of 3D printing of turbine blades will allow to verify the possibility of using this process in conditions similar to production. It will enable the determination of the performance of such blades and the estimation of manufacturing costs. The project envisages developing a technology for machining aircraft turbine blades as a finished product, which also reduces the production costs of these aeronautical parts. A modern technology will be developed to protect the blades against high temperature and corrosion. Non-carcinogenic chromium (VI) suspensions, consisting of aluminium nanopowder, will be used to produce layers. An experimental stand for aluminium will be designed and constructed. The project will develop an experimental stand and robotic polishing of turbine blades. This will replace the existing manual polishing and reduce the number of emerging deficiencies. The project will carry out attempts to weld laser stelite on tips (bandages) of blades. This will be an alternative to manual welding using the TIG method. The final stage of the project will examine the performance of the produced blades – demonstrators, inter alia, in wa (English) | |||||||||||||||
Property / summary: Reference number of the aid programme: SA.41471(2015/X) Purpose of public aid: Article 25 of EC Regulation No 651/2014 of 17 June 2014 declaring certain types of aid compatible with the internal market in the application of Articles 107 and 108 of the Treaty (OJ L. I'm sorry. EU L 187/1 of 26.06.2014),The project will include demonstrations of air-engine turbine blades using modern 3D printing and machining methods. These methods are an alternative to the costly precision casting process in the vacuum of aircraft engine blades. The project will make a model of the turbine blade CAD model based on the actual part. Carrying out industrial tests of 3D printing of turbine blades will allow to verify the possibility of using this process in conditions similar to production. It will enable the determination of the performance of such blades and the estimation of manufacturing costs. The project envisages developing a technology for machining aircraft turbine blades as a finished product, which also reduces the production costs of these aeronautical parts. A modern technology will be developed to protect the blades against high temperature and corrosion. Non-carcinogenic chromium (VI) suspensions, consisting of aluminium nanopowder, will be used to produce layers. An experimental stand for aluminium will be designed and constructed. The project will develop an experimental stand and robotic polishing of turbine blades. This will replace the existing manual polishing and reduce the number of emerging deficiencies. The project will carry out attempts to weld laser stelite on tips (bandages) of blades. This will be an alternative to manual welding using the TIG method. The final stage of the project will examine the performance of the produced blades – demonstrators, inter alia, in wa (English) / rank | |||||||||||||||
Normal rank | |||||||||||||||
Property / summary: Reference number of the aid programme: SA.41471(2015/X) Purpose of public aid: Article 25 of EC Regulation No 651/2014 of 17 June 2014 declaring certain types of aid compatible with the internal market in the application of Articles 107 and 108 of the Treaty (OJ L. I'm sorry. EU L 187/1 of 26.06.2014),The project will include demonstrations of air-engine turbine blades using modern 3D printing and machining methods. These methods are an alternative to the costly precision casting process in the vacuum of aircraft engine blades. The project will make a model of the turbine blade CAD model based on the actual part. Carrying out industrial tests of 3D printing of turbine blades will allow to verify the possibility of using this process in conditions similar to production. It will enable the determination of the performance of such blades and the estimation of manufacturing costs. The project envisages developing a technology for machining aircraft turbine blades as a finished product, which also reduces the production costs of these aeronautical parts. A modern technology will be developed to protect the blades against high temperature and corrosion. Non-carcinogenic chromium (VI) suspensions, consisting of aluminium nanopowder, will be used to produce layers. An experimental stand for aluminium will be designed and constructed. The project will develop an experimental stand and robotic polishing of turbine blades. This will replace the existing manual polishing and reduce the number of emerging deficiencies. The project will carry out attempts to weld laser stelite on tips (bandages) of blades. This will be an alternative to manual welding using the TIG method. The final stage of the project will examine the performance of the produced blades – demonstrators, inter alia, in wa (English) / qualifier | |||||||||||||||
point in time: 14 October 2020
|
Revision as of 10:32, 14 October 2020
Project in Poland financed by DG Regio
Language | Label | Description | Also known as |
---|---|---|---|
English | Advanced gas turbine blade manufacturing technologies, automatic polishing and 3D printing |
Project in Poland financed by DG Regio |
Statements
7,496,886.9 zloty
0 references
9,957,616.0 zloty
0 references
75.29 percent
0 references
1 August 2016
0 references
31 July 2020
0 references
ULTRATECH SP. Z O.O.
0 references
Numer_referencyjny_programu_pomocowego: SA.41471(2015/X) Przeznaczenie_pomocy_publicznej: art. 25 rozporządzenia KE nr 651/2014 z dnia 17 czerwca 2014 r. uznające niektóre rodzaje pomocy za zgodne z rynkiem wewnętrznym w stosowaniu art. 107 i 108 Traktatu (Dz. Urz. UE L 187/1 z 26.06.2014),W projekcie wykonane będą demonstratory łopatek turbiny silnika lotniczego z użyciem nowoczesnych metod druku 3D oraz obróbki skrawaniem. Metody te stanowią alternatywę dla kosztownego procesu odlewania precyzyjnego w próżni łopatek silników lotniczych. W projekcie wykonany będzie model CAD łopatki turbiny bazujący na rzeczywistej części. Przeprowadzenie prób przemysłowych drukowania 3D łopatek turbin pozwoli na zweryfikowanie możliwości zastosowania tego procesu w warunkach zbliżonych do produkcyjnych. Umożliwi określenie właściwości użytkowych takich łopatek oraz oszacowanie kosztów wytwarzania. W projekcie zakłada się opracowanie technologii obróbki skrawaniem łopatek turbin silników lotniczych jako gotowego produktu co również obniża koszty produkcji tych części lotniczych. Opracowana będzie nowoczesna technologia aluminiowania łopatek turbin metodą zawiesinową.Technologia ta jest niezbędna do zabezpieczenia łopatek przed wysoką temperaturą i korozją. Do wytwarzania warstw użyte będą zawiesiny pozbawione rakotwórczego chromu (VI), których składnikiem będzie nanoproszek aluminium. Zaprojektowane i wykonane będzie stanowisko doświadczalne do aluminiowania. W projekcie opracowana będzie stanowisko doświadczalne oraz technologia zrobotyzowanego polerowania łopatek turbin. Pozwoli to na zastąpienie dotychczas stosowanego polerowania ręcznego i zredukuje ilość powstających braków. W realizowanym projekcie przeprowadzone będą próby napawania laserowego stelitu na końcówkach (bandażach) łopatek. Będzie to stanowiło alternatywę dla ręcznego napawania metodą TIG. W końcowym etapie projektu zbadane zostaną właściwości użytkowe wytworzonych łopatek – demonstratorów między innymi w wa (Polish)
0 references
Reference number of the aid programme: SA.41471(2015/X) Purpose of public aid: Article 25 of EC Regulation No 651/2014 of 17 June 2014 declaring certain types of aid compatible with the internal market in the application of Articles 107 and 108 of the Treaty (OJ L. I'm sorry. EU L 187/1 of 26.06.2014),The project will include demonstrations of air-engine turbine blades using modern 3D printing and machining methods. These methods are an alternative to the costly precision casting process in the vacuum of aircraft engine blades. The project will make a model of the turbine blade CAD model based on the actual part. Carrying out industrial tests of 3D printing of turbine blades will allow to verify the possibility of using this process in conditions similar to production. It will enable the determination of the performance of such blades and the estimation of manufacturing costs. The project envisages developing a technology for machining aircraft turbine blades as a finished product, which also reduces the production costs of these aeronautical parts. A modern technology will be developed to protect the blades against high temperature and corrosion. Non-carcinogenic chromium (VI) suspensions, consisting of aluminium nanopowder, will be used to produce layers. An experimental stand for aluminium will be designed and constructed. The project will develop an experimental stand and robotic polishing of turbine blades. This will replace the existing manual polishing and reduce the number of emerging deficiencies. The project will carry out attempts to weld laser stelite on tips (bandages) of blades. This will be an alternative to manual welding using the TIG method. The final stage of the project will examine the performance of the produced blades – demonstrators, inter alia, in wa (English)
14 October 2020
0 references
Identifiers
POIR.01.02.00-00-0016/15
0 references