Development of a virtual agent — DEP GLUE & pressing; using artificial intelligence algorithms and real-time data streams in order to optimise the revenues of products and services in subscription models (Q78719): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed an Item)
(‎Changed an Item: Label in wikidata changed)
label / enlabel / en
 
Development of a virtual agent — DEP GLUE & pressing; using artificial intelligence algorithms and real-time data streams in order to optimise the revenues of products and services in subscription models

Revision as of 07:10, 18 February 2020

Project in Poland financed by DG Regio
Language Label Description Also known as
English
Development of a virtual agent — DEP GLUE & pressing; using artificial intelligence algorithms and real-time data streams in order to optimise the revenues of products and services in subscription models
Project in Poland financed by DG Regio

    Statements

    0 references
    6,997,328.26 zloty
    0 references
    1,679,358.7824 Euro
    13 January 2020
    0 references
    9,425,347.1 zloty
    0 references
    2,262,083.304 Euro
    13 January 2020
    0 references
    74.24 percent
    0 references
    8 January 2018
    0 references
    31 December 2019
    0 references
    DEEP BI POLAND SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ
    0 references

    52°24'2.2"N, 16°55'11.3"E
    0 references
    W ramach Projektu zostanie opracowany wirtualny agent - DEEP GLUE – wykorzystujący algorytmy sztucznej inteligencji i przetwarzania strumieni danych w czasie rzeczywistym w celu optymalizacji przychodów z produktów i usług w modelach subskrypcyjnych. Koncepcja planowanej technologii wynika z próby połączenia kilku metod uczenia maszynowego, które sprawdziły się w rozwiązywaniu problemów (vide radykalna poprawa efektywności systemów rekomendacyjnych w serwisach Google Play, LinkedIn czy Criteo uzyskana dzięki połączeniu “uczenia szerokiego” z “uczeniem głębokim”) i zastosowania ich do automatyzacji sprzedaży subskrypcji, gdzie wcześniej nie stosowano tego typu metod. Dodatkowym bodźcem przyjęcia takiego kierunku jest duży spadek kosztu przetwarzania danych big data w czasie rzeczywistym, przy skali danych na jakiej operują wydawcy. Założeniem projektu jest znalezienie optymalnych metod uczenia maszynowego, które będą w sposób opłacalny dawać dodatkowe przychody z subskrypcji dla wydawców. Deep Glue pozwoli uzyskać następujące korzyści dla klientów z niego korzystających: - Wzrost skuteczności o min. 10% liczby pozyskanych subskrypcji oraz użytkowników rejestrujących się w systemie wydawcy względem dotychczas stosowanych rozwiązań przez wydawców. - Wzrost, o min. 10%, wskaźnika CTR (Click-Through Rate) dla hiperłączy selekcjonowanych i prezentowanych użytkownikowi przez system Deep Glue względem narzędzi dotychczas stosowanych przez wydawców - Długoterminowy, mierzony zarówno miarą spędzonego czasu, jak i częstością wizyt w serwisie wydawcy, poziom tzw. zaangażowania (ang. engagement) użytkownika należącego Numer_referencyjny_programu_pomocowego: SA.41471(2015/X) Przeznaczenie_pomocy_publicznej: art. 25 rozporządzenia KE nr 651/2014 z dnia 17 czerwca 2014 r. uznające niektóre rodzaje pomocy za zgodne z rynkiem wewnętrznym w stosowaniu art. 107 i 108 Traktatu (Dz. Urz. UE L 187/1 z 26.06.2014). (Polish)
    0 references

    Identifiers

    POIR.01.01.01-00-1352/17
    0 references