Antiferromagnetic beneficial effect and development of epitoxial bicillic antiferromagnes — two routes towards next-generation spintronics (Q84261): Difference between revisions
Jump to navigation
Jump to search
(Changed an Item) |
(Changed an Item) |
||
Property / beneficiary | |||
Property / beneficiary: AGH University of Science and Technology / rank | |||
Normal rank |
Revision as of 18:57, 9 June 2020
Project in Poland financed by DG Regio
Language | Label | Description | Also known as |
---|---|---|---|
English | Antiferromagnetic beneficial effect and development of epitoxial bicillic antiferromagnes — two routes towards next-generation spintronics |
Project in Poland financed by DG Regio |
Statements
787,310.0 zloty
0 references
787,310.0 zloty
0 references
100.0 percent
0 references
1 March 2018
0 references
29 February 2020
0 references
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE
0 references
The main active components of spintronic elements are ferromagnets (FMs), in which a net spin polarization is responsible for logical zeros and ones. Antiferromagnets (AFMs), in which magnetic order is accompanied by a zero net magnetic moment, play an important role in the spin-valve effect by establishing direction of FM reference layer via an exchange bias effect. However, recent demonstration of magneto-transport effects in AFMs and their ultrafast magnetization dynamics make them potential candidates that could replace FMs in spintronic devices. In this project I propose two routes that will lead to development of antiferromagnetic spintronics. The first one is focused on tuning magnetic properties of AFMs via proximity effect in AFM/AFM bilayers. The second path concentrates on the epitaxial bimetallic AFMs. In both paths the feasibility of AFM spintronics with studied AFM materials will be presented. (Polish)
0 references
The main components of parent agents are responsible for the biological workers and ones.Antiferromagnes (AFMs), in whim magnetic order is accompaned and zero net magnetic timing, play roles in the spin off effect effect by establishing directive of FM as effective effect.Hwever, a demonstration of a demonstration of magneto-transport effects in AFMs and their ultra-fast magnetisation dynamic magnetisation provide that could replace FMS in spinetoram practices.In this project I two respects that will lead to development of anti-ferromagnetic spinics.The first is based on training activities of AFMs via proximites effecct in AFM/AFM billayers.The semamide concentrates on the epitoxial bicilicc AFMs.In the boh path, the feasibility of AFM spintronics with sound material will be requested. (English)
0 references
Identifiers
POIR.04.04.00-00-3E5D/17
0 references