Development and validation of multipurpose optimisation procedures for the robust and maintenance-free operation of alternative power generating equipment operating at low speed and island operation in order to increase energy security (Q3929499): Difference between revisions
Jump to navigation
Jump to search
(Changed an Item: add summary) |
(Changed an Item: Adding English translations) |
||||||||||||||
Property / summary | |||||||||||||||
For the competitiveness, cost-effectiveness and security of the related energy supply, it is important that they have at least as good or better reliability indicators and maintenance costs as compared to other non-green energy generation technologies. The first generations of renewable energy production solutions were characterised primarily by increasing unit performance, while maintaining maintenance needs at almost the same level. At the same time, economies of scale cannot be increased beyond all borders, so the way to maintain competitiveness can be to increase reliability and maintenance by combining modern management and diagnostic procedures and optimisation methods that meet multiple target functions. In the course of the project, the development of an energy management strategy for an alternative power generating installation that meets several optimum criteria in order to achieve its objective, reliable but efficient and safe management and operation at minimal maintenance costs. The focus of the task is to create a product capable of operating on the market at an unusually wide range of speeds and with extremely good energy production indicators in proportion to the cost of the cost. Taking into account the energy demand (e.g. mobile relay station, electric vehicle charging, etc.) and stochasticity of energy production at the installation site of the alternative power generation, an artificial intelligence-based method, complemented by an adaptive-predictive strategy, will be developed to increase energy security and availability. In order to effectively develop the control algorithms of the alternative power generating module implemented on an embedded system, we want to validate the optimisation methods used on the power generation system in hardware-in-the-loop (HIL) environment, which requires dynamic modelling of the power conversion equipment and mechanical system units, and in order to achieve robust, well-functioning regulatory synthesis even under extreme conditions, the overall modeling of the system is also necessary. The design and HIL testing of the control strategy and electrical system of the equipment will be completed for both insular and regenerating type power generators. Our goal is to optimise the components of the mechanical structure in order to maintain maintenance-free operation of power generating equipment installed in difficult locations, to replace it with innovative system elements for high corrosion resistance, or to test the applicability of coatings, materials and cladding elements that are well resistant to erosion-corrosion stress. In order to verify the operation of the optimisation methods used on isolated and regenerating alternative power generation systems, and to support the indicators of productivity, corrosion resistance and efficiency using measurements, prototypes of two small wind power generators are designed and manufactured, one for testing island and one for regenerating to the grid. B) Optimising alternative power generation equipment with high AEP (annual energy production) and low maintenance costs and energy security will create a product capable of operating with extremely good energy production ratios in proportion to cost, capable of operating cost-effectively in many parts of the world with higher reliability indicators and maintenance costs than those prevailing in the market segment where high stress tolerance is required. Where there is no or weak energy distribution system, or where long distances make it difficult to build the energy grid, it is particularly profitable to have an alternative power generating device capable of serving the energy demand at the installation site (e.g. mobile relay station, electric vehicle charging, etc.) with minimal maintenance and supervised availability. Equipment with an AI-based management strategy complemented by an adaptive-predictive strategy that takes into account the stochasticity of energy production can be reliably and economically operated thanks to energy efficiency, improved, more efficient energy storage and distribution techniques, flexibility and outstanding energy production indicators at low wind speeds. The construction of modern corrosion-resistant materials, which is well resistant to erosion-corrosion stress and takes into account extreme environmental impacts, generates outstanding business benefits due to significantly reduced maintenance costs during long-term operation. Using self-tuning, adaptive methods using different control strategies at an unusually wide range of speeds (wind speeds 7.5-30 m/s) on the market unusually unusual in the market (English) | |||||||||||||||
Property / summary: For the competitiveness, cost-effectiveness and security of the related energy supply, it is important that they have at least as good or better reliability indicators and maintenance costs as compared to other non-green energy generation technologies. The first generations of renewable energy production solutions were characterised primarily by increasing unit performance, while maintaining maintenance needs at almost the same level. At the same time, economies of scale cannot be increased beyond all borders, so the way to maintain competitiveness can be to increase reliability and maintenance by combining modern management and diagnostic procedures and optimisation methods that meet multiple target functions. In the course of the project, the development of an energy management strategy for an alternative power generating installation that meets several optimum criteria in order to achieve its objective, reliable but efficient and safe management and operation at minimal maintenance costs. The focus of the task is to create a product capable of operating on the market at an unusually wide range of speeds and with extremely good energy production indicators in proportion to the cost of the cost. Taking into account the energy demand (e.g. mobile relay station, electric vehicle charging, etc.) and stochasticity of energy production at the installation site of the alternative power generation, an artificial intelligence-based method, complemented by an adaptive-predictive strategy, will be developed to increase energy security and availability. In order to effectively develop the control algorithms of the alternative power generating module implemented on an embedded system, we want to validate the optimisation methods used on the power generation system in hardware-in-the-loop (HIL) environment, which requires dynamic modelling of the power conversion equipment and mechanical system units, and in order to achieve robust, well-functioning regulatory synthesis even under extreme conditions, the overall modeling of the system is also necessary. The design and HIL testing of the control strategy and electrical system of the equipment will be completed for both insular and regenerating type power generators. Our goal is to optimise the components of the mechanical structure in order to maintain maintenance-free operation of power generating equipment installed in difficult locations, to replace it with innovative system elements for high corrosion resistance, or to test the applicability of coatings, materials and cladding elements that are well resistant to erosion-corrosion stress. In order to verify the operation of the optimisation methods used on isolated and regenerating alternative power generation systems, and to support the indicators of productivity, corrosion resistance and efficiency using measurements, prototypes of two small wind power generators are designed and manufactured, one for testing island and one for regenerating to the grid. B) Optimising alternative power generation equipment with high AEP (annual energy production) and low maintenance costs and energy security will create a product capable of operating with extremely good energy production ratios in proportion to cost, capable of operating cost-effectively in many parts of the world with higher reliability indicators and maintenance costs than those prevailing in the market segment where high stress tolerance is required. Where there is no or weak energy distribution system, or where long distances make it difficult to build the energy grid, it is particularly profitable to have an alternative power generating device capable of serving the energy demand at the installation site (e.g. mobile relay station, electric vehicle charging, etc.) with minimal maintenance and supervised availability. Equipment with an AI-based management strategy complemented by an adaptive-predictive strategy that takes into account the stochasticity of energy production can be reliably and economically operated thanks to energy efficiency, improved, more efficient energy storage and distribution techniques, flexibility and outstanding energy production indicators at low wind speeds. The construction of modern corrosion-resistant materials, which is well resistant to erosion-corrosion stress and takes into account extreme environmental impacts, generates outstanding business benefits due to significantly reduced maintenance costs during long-term operation. Using self-tuning, adaptive methods using different control strategies at an unusually wide range of speeds (wind speeds 7.5-30 m/s) on the market unusually unusual in the market (English) / rank | |||||||||||||||
Normal rank | |||||||||||||||
Property / summary: For the competitiveness, cost-effectiveness and security of the related energy supply, it is important that they have at least as good or better reliability indicators and maintenance costs as compared to other non-green energy generation technologies. The first generations of renewable energy production solutions were characterised primarily by increasing unit performance, while maintaining maintenance needs at almost the same level. At the same time, economies of scale cannot be increased beyond all borders, so the way to maintain competitiveness can be to increase reliability and maintenance by combining modern management and diagnostic procedures and optimisation methods that meet multiple target functions. In the course of the project, the development of an energy management strategy for an alternative power generating installation that meets several optimum criteria in order to achieve its objective, reliable but efficient and safe management and operation at minimal maintenance costs. The focus of the task is to create a product capable of operating on the market at an unusually wide range of speeds and with extremely good energy production indicators in proportion to the cost of the cost. Taking into account the energy demand (e.g. mobile relay station, electric vehicle charging, etc.) and stochasticity of energy production at the installation site of the alternative power generation, an artificial intelligence-based method, complemented by an adaptive-predictive strategy, will be developed to increase energy security and availability. In order to effectively develop the control algorithms of the alternative power generating module implemented on an embedded system, we want to validate the optimisation methods used on the power generation system in hardware-in-the-loop (HIL) environment, which requires dynamic modelling of the power conversion equipment and mechanical system units, and in order to achieve robust, well-functioning regulatory synthesis even under extreme conditions, the overall modeling of the system is also necessary. The design and HIL testing of the control strategy and electrical system of the equipment will be completed for both insular and regenerating type power generators. Our goal is to optimise the components of the mechanical structure in order to maintain maintenance-free operation of power generating equipment installed in difficult locations, to replace it with innovative system elements for high corrosion resistance, or to test the applicability of coatings, materials and cladding elements that are well resistant to erosion-corrosion stress. In order to verify the operation of the optimisation methods used on isolated and regenerating alternative power generation systems, and to support the indicators of productivity, corrosion resistance and efficiency using measurements, prototypes of two small wind power generators are designed and manufactured, one for testing island and one for regenerating to the grid. B) Optimising alternative power generation equipment with high AEP (annual energy production) and low maintenance costs and energy security will create a product capable of operating with extremely good energy production ratios in proportion to cost, capable of operating cost-effectively in many parts of the world with higher reliability indicators and maintenance costs than those prevailing in the market segment where high stress tolerance is required. Where there is no or weak energy distribution system, or where long distances make it difficult to build the energy grid, it is particularly profitable to have an alternative power generating device capable of serving the energy demand at the installation site (e.g. mobile relay station, electric vehicle charging, etc.) with minimal maintenance and supervised availability. Equipment with an AI-based management strategy complemented by an adaptive-predictive strategy that takes into account the stochasticity of energy production can be reliably and economically operated thanks to energy efficiency, improved, more efficient energy storage and distribution techniques, flexibility and outstanding energy production indicators at low wind speeds. The construction of modern corrosion-resistant materials, which is well resistant to erosion-corrosion stress and takes into account extreme environmental impacts, generates outstanding business benefits due to significantly reduced maintenance costs during long-term operation. Using self-tuning, adaptive methods using different control strategies at an unusually wide range of speeds (wind speeds 7.5-30 m/s) on the market unusually unusual in the market (English) / qualifier | |||||||||||||||
point in time: 8 February 2022
|
Revision as of 21:12, 8 February 2022
Project Q3929499 in Hungary
Language | Label | Description | Also known as |
---|---|---|---|
English | Development and validation of multipurpose optimisation procedures for the robust and maintenance-free operation of alternative power generating equipment operating at low speed and island operation in order to increase energy security |
Project Q3929499 in Hungary |
Statements
604,000,000 forint
0 references
2,789,932.347 Euro
0.0027336256 Euro
15 December 2021
0 references
1,020,597,827.005 forint
0 references
59.181166 percent
0 references
8 January 2018
0 references
30 November 2020
0 references
Lakics Gépgyártó Korlátolt Felelősségű Társaság
0 references
A) A környezetbarát, megújuló technológiák versenyképessége, költséghatékonysága és a kapcsolódó energiaszolgáltatás biztonságának fenntartása szempontjából fontos, hogy más nem környezetbarát energiatermelő technológiákhoz viszonyítva legalább olyan jó vagy jobb megbízhatósági mutatókkal és karbantartási költségekkel rendelkezzenek. A megújuló energiatermelő megoldások első generációit elsősorban az egységre eső teljesítmény növelése jellemezte, a karbantartási igények közel azonos szinten tartása mellett. A méretgazdaságosság ugyanakkor nem növelhető minden határon túl, így a versenyképesség megőrzésének módja a megbízhatóság és karbantarthatóság növelése lehet a korszerű irányítási és diagnosztikai eljárások és a több célfüggvénynek megfelelő optimalizálási módszerek együttes alkalmazásával. A projekt során egy alternatív energiatermelő berendezés több optimum kritériumnak is megfelelő energiaszabályozási stratégiájának a kidolgozása a cél, a megbízható, de hatékony és biztonságos irányításának, valamint minimális karbantartási költségek melletti üzemeltetésének érdekében. A feladat során kiemelt szempont, hogy a piacon szokatlanul széles sebességtartományon, a bekerülési költség arányában kiemelkedően jó energiatermelési mutatókkal működni képes termék jöjjön létre. Az alternatív energiatermelő berendezés telepítési helyszínén felmerülő energiaigény (pl. mobil átjátszó állomás, elektromos jármű töltése stb.) és az energiatermelés sztochasztikusságát figyelembe véve egy adaptív-prediktív stratégiával kiegészített mesterséges intelligencia alapú módszer kerül kifejlesztésre az energiabiztonság és rendelkezésre állás növelése érdekében. Az alternatív energiatermelő berendezés beágyazott rendszeren implementált szabályzó algoritmusainak hatékony fejlesztése érdekében az energiatermelő rendszeren alkalmazott optimalizálási módszereket hardware-in-the-loop (HIL) környezetben kívánjuk validálni, ami megkívánja a villamos energiaátalakítást végző berendezés, illetve a mechanikai rendszeregységek dinamikus modellezését, emellett a robusztus, extrém körülmények között is jól működő szabályozó szintézis eléréséhez a teljes rendszert átfogó modellalkotásra is szükség van. A berendezés szabályozási stratégiájának és elektromos rendszerének tervezése és HIL tesztelése mind szigetüzemű, mind hálózatra visszatápláló típusú energiatermelő esetére elkészül. Célunk a nehezen megközelíthető helyeken telepített energiatermelő berendezések karbantartásmentes üzemeltetésének érdekében a mechanikai szerkezet komponenseinek optimalizálása, a nagymértékű korrózióállóság érdekében innovatív rendszerelemekkel történő helyettesítése vagy az eróziós-korróziós igénybevételnek jól ellenálló bevonat, anyag, burkolatelem alkalmazhatóságának vizsgálata. A szigetüzemű és hálózatra visszatápláló alternatív energiatermelő rendszereken alkalmazott optimalizálási módszerek működésének igazolására, illetve a termelékenyégi, korrózióállósági és hatékonysági mutatók mérésekkel történő alátámasztására két kisméretű szélenergia termelő berendezés prototípusa kerül megtervezésre és legyártásra, egy a szigetüzemű, egy pedig a hálózatra visszatápláló üzemmódok vizsgálatára. B) Az alternatív energiatermelő berendezést a magas AEP (éves energia termelés) mellett az alacsony karbantartási költségekre és az energiabiztonságra is optimalizálva a bekerülési költség arányában kiemelkedően jó energiatermelési mutatókkal működni képes termék jön létre, amely alkalmas a világ számos olyan területén költséghatékonyan, a piaci szegmensben elterjedtnél jobb megbízhatósági mutatókkal és karbantartási költségekkel működni, ahol nagy stressz tűrő képességre van szükség. Ahol nincs, vagy gyenge az energia elosztó rendszer illetve ahol a nagy távolságok megnehezítik az energiahálózat kiépítését ott kifejezetten jövedelmező egy olyan alternatív energiatermelő berendezés jelenléte, amely a telepítési helyszínén felmerülő energiaigény (pl. mobil átjátszó állomás, elektromos jármű töltése stb.) kiszolgálását minimális karbantartási igény és felügyelt rendelkezésre állás mellett teljesíteni képes. Az energiatermelés sztochasztikusságát figyelembe vevő, adaptív-prediktív stratégiával kiegészített mesterséges intelligencia alapú irányítási stratégiával ellátott berendezés megbízhatóan és gazdaságosan üzemeltethető az energiahatékonyságnak, a jobb, hatékonyabb energiatárolási és –elosztási technikáknak, a flexibilitásnak és a kis szélsebességek esetén is kiemelkedő energiatermelési mutatóknak köszönhetően. Az eróziós-korróziós igénybevételnek jól ellenálló és a szélsőséges környezeti hatásokat figyelembe vevő, korszerű, korrózióálló anyagokból készülő konstrukció a hosszú távú üzemeltetés során a jelentősen csökkentett karbantartási költségeknek köszönhetően kiemelkedő üzleti hasznot termel. A piacon szokatlanul széles sebességtartományon (7,5 – 30 m/s szélsebesség) különböző szabályozási stratégiákat alkalmazó, önhangoló, adaptív módszerek segítségével a piacon szokatlan (Hungarian)
0 references
For the competitiveness, cost-effectiveness and security of the related energy supply, it is important that they have at least as good or better reliability indicators and maintenance costs as compared to other non-green energy generation technologies. The first generations of renewable energy production solutions were characterised primarily by increasing unit performance, while maintaining maintenance needs at almost the same level. At the same time, economies of scale cannot be increased beyond all borders, so the way to maintain competitiveness can be to increase reliability and maintenance by combining modern management and diagnostic procedures and optimisation methods that meet multiple target functions. In the course of the project, the development of an energy management strategy for an alternative power generating installation that meets several optimum criteria in order to achieve its objective, reliable but efficient and safe management and operation at minimal maintenance costs. The focus of the task is to create a product capable of operating on the market at an unusually wide range of speeds and with extremely good energy production indicators in proportion to the cost of the cost. Taking into account the energy demand (e.g. mobile relay station, electric vehicle charging, etc.) and stochasticity of energy production at the installation site of the alternative power generation, an artificial intelligence-based method, complemented by an adaptive-predictive strategy, will be developed to increase energy security and availability. In order to effectively develop the control algorithms of the alternative power generating module implemented on an embedded system, we want to validate the optimisation methods used on the power generation system in hardware-in-the-loop (HIL) environment, which requires dynamic modelling of the power conversion equipment and mechanical system units, and in order to achieve robust, well-functioning regulatory synthesis even under extreme conditions, the overall modeling of the system is also necessary. The design and HIL testing of the control strategy and electrical system of the equipment will be completed for both insular and regenerating type power generators. Our goal is to optimise the components of the mechanical structure in order to maintain maintenance-free operation of power generating equipment installed in difficult locations, to replace it with innovative system elements for high corrosion resistance, or to test the applicability of coatings, materials and cladding elements that are well resistant to erosion-corrosion stress. In order to verify the operation of the optimisation methods used on isolated and regenerating alternative power generation systems, and to support the indicators of productivity, corrosion resistance and efficiency using measurements, prototypes of two small wind power generators are designed and manufactured, one for testing island and one for regenerating to the grid. B) Optimising alternative power generation equipment with high AEP (annual energy production) and low maintenance costs and energy security will create a product capable of operating with extremely good energy production ratios in proportion to cost, capable of operating cost-effectively in many parts of the world with higher reliability indicators and maintenance costs than those prevailing in the market segment where high stress tolerance is required. Where there is no or weak energy distribution system, or where long distances make it difficult to build the energy grid, it is particularly profitable to have an alternative power generating device capable of serving the energy demand at the installation site (e.g. mobile relay station, electric vehicle charging, etc.) with minimal maintenance and supervised availability. Equipment with an AI-based management strategy complemented by an adaptive-predictive strategy that takes into account the stochasticity of energy production can be reliably and economically operated thanks to energy efficiency, improved, more efficient energy storage and distribution techniques, flexibility and outstanding energy production indicators at low wind speeds. The construction of modern corrosion-resistant materials, which is well resistant to erosion-corrosion stress and takes into account extreme environmental impacts, generates outstanding business benefits due to significantly reduced maintenance costs during long-term operation. Using self-tuning, adaptive methods using different control strategies at an unusually wide range of speeds (wind speeds 7.5-30 m/s) on the market unusually unusual in the market (English)
8 February 2022
0 references
Kaposvár, Somogy
0 references
Identifiers
GINOP-2.1.6-16-2017-00004
0 references