Understanding Bacterial Nucleotide Excision Repair at the Level of the Single Molecule Inside Living Cells. (Q84178): Difference between revisions
Jump to navigation
Jump to search
(Changed label, description and/or aliases in de, and other parts: Adding German translations) |
(Changed label, description and/or aliases in nl, and other parts: Adding Dutch translations) |
||||||||||||||
label / nl | label / nl | ||||||||||||||
Inzicht in Bacterial Nucleotide Excision Reparatie op het niveau van de Enkele Molecule Inside Living Cells. | |||||||||||||||
Property / summary | |||||||||||||||
Defecte DNA-reparatie leidt tot een accumulatie van mutaties, wat vaak resulteert in kanker. De Nucleotide Excision Repair (NER) route verwijdert een DNA laesies veroorzaakt door UV-licht, sigarettenrook en chemische mutagene stoffen. NER is zeer geconserveerd, en het bestuderen van de eenvoudigere NER in bacteriën geeft een belangrijk inzicht in menselijke NER. Ik stel een interdisciplinaire aanpak voor om de Mechanistische details van bacteriële NER in levende cellen te begrijpen. Ik zal een combinatie van geavanceerde single-molecule methoden gebruiken om te verduidelijken hoe DNA wordt gerepareerd in levende cellen. Ik zal super-resolutie microscopie gecombineerd gebruiken om het gedrag van individuele NER-eiwitten te bestuderen. Om dit aan te vullen, zullen conventionele biochemie, celbiologie, genetica, smFRET assays, FCS en TIRF microscopie worden gebruikt. Samen zal dit een uitgebreid begrip bieden van de bacteriële NER-route en de eerste stappen vormen naar mijn uiteindelijke doel, namelijk begrijpen hoe menselijke cellen DNA repareren. (Dutch) | |||||||||||||||
Property / summary: Defecte DNA-reparatie leidt tot een accumulatie van mutaties, wat vaak resulteert in kanker. De Nucleotide Excision Repair (NER) route verwijdert een DNA laesies veroorzaakt door UV-licht, sigarettenrook en chemische mutagene stoffen. NER is zeer geconserveerd, en het bestuderen van de eenvoudigere NER in bacteriën geeft een belangrijk inzicht in menselijke NER. Ik stel een interdisciplinaire aanpak voor om de Mechanistische details van bacteriële NER in levende cellen te begrijpen. Ik zal een combinatie van geavanceerde single-molecule methoden gebruiken om te verduidelijken hoe DNA wordt gerepareerd in levende cellen. Ik zal super-resolutie microscopie gecombineerd gebruiken om het gedrag van individuele NER-eiwitten te bestuderen. Om dit aan te vullen, zullen conventionele biochemie, celbiologie, genetica, smFRET assays, FCS en TIRF microscopie worden gebruikt. Samen zal dit een uitgebreid begrip bieden van de bacteriële NER-route en de eerste stappen vormen naar mijn uiteindelijke doel, namelijk begrijpen hoe menselijke cellen DNA repareren. (Dutch) / rank | |||||||||||||||
Normal rank | |||||||||||||||
Property / summary: Defecte DNA-reparatie leidt tot een accumulatie van mutaties, wat vaak resulteert in kanker. De Nucleotide Excision Repair (NER) route verwijdert een DNA laesies veroorzaakt door UV-licht, sigarettenrook en chemische mutagene stoffen. NER is zeer geconserveerd, en het bestuderen van de eenvoudigere NER in bacteriën geeft een belangrijk inzicht in menselijke NER. Ik stel een interdisciplinaire aanpak voor om de Mechanistische details van bacteriële NER in levende cellen te begrijpen. Ik zal een combinatie van geavanceerde single-molecule methoden gebruiken om te verduidelijken hoe DNA wordt gerepareerd in levende cellen. Ik zal super-resolutie microscopie gecombineerd gebruiken om het gedrag van individuele NER-eiwitten te bestuderen. Om dit aan te vullen, zullen conventionele biochemie, celbiologie, genetica, smFRET assays, FCS en TIRF microscopie worden gebruikt. Samen zal dit een uitgebreid begrip bieden van de bacteriële NER-route en de eerste stappen vormen naar mijn uiteindelijke doel, namelijk begrijpen hoe menselijke cellen DNA repareren. (Dutch) / qualifier | |||||||||||||||
point in time: 16 December 2021
|
Revision as of 19:53, 16 December 2021
Project Q84178 in Poland
Language | Label | Description | Also known as |
---|---|---|---|
English | Understanding Bacterial Nucleotide Excision Repair at the Level of the Single Molecule Inside Living Cells. |
Project Q84178 in Poland |
Statements
2,949,970.0 zloty
0 references
2,949,970.0 zloty
0 references
100.0 percent
0 references
1 November 2016
0 references
30 April 2020
0 references
UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU
0 references
Q2513981 (Deleted Item)
0 references
Malfunctioning DNA repair lead to an accumulation of mutations, which frequently results in cancer. The Nucleotide Excision Repair (NER) pathway removes a DNA lesions caused by UV light, cigarette smoke and chemical mutagens. NER is highly conserved, and studying the simpler NER in bacteria provides key insight into human NER. I propose an interdisciplinary approach to understand the mechanistic details of bacterial NER in living cells. I will use a combination of cutting-edge single-molecule methods to elucidate how DNA is repaired inside living cells. I will use super-resolution microscopy combined to study the behaviour of individual NER proteins. To complement this, conventional biochemistry, cell biology, genetics, smFRET assays, FCS and TIRF microscopy will be used. Together, this will provide a comprehensive understanding of the bacterial NER pathway, and constitute the first steps toward my ultimate goal, which is to understand how human cells repair DNA. (Polish)
0 references
Malfunctioning DNA repair lead to an accumulation of mutations, which frequently results in cancer. The Nucleotide Excision Repair (NER) pathway removes a DNA lesions caused by UV light, cigarette smoke and chemical mutagens. NER is highly conserved, and studying the simpler NER in bacteria provides key insight into human NER. I propose an interdisciplinary approach to understand the mechanistic details of bacterial NER in living cells. I will use a combination of cutting-edge single-molecule methods to elucidate how DNA is repaired inside living cells. I will use super-resolution microscopy combined to study the behaviour of individual NER proteins. To complement this, conventional Biochemistry, cell biology, genetics, SmFRET assays, FCS and tirf microscopy will be used. Together, this will provide a comprehensive understanding of the bacterial NER pathway, and constitute the first steps towards my ultimate goal, which is to understand how human cells repair DNA. (English)
14 October 2020
0 references
Le dysfonctionnement de la réparation de l’ADN entraîne une accumulation de mutations, ce qui entraîne souvent un cancer. La voie de réparation de l’excision nucléotide (NER) élimine une lésion de l’ADN causée par la lumière UV, la fumée de cigarette et les mutagènes chimiques. Le NER est très conservé, et l’étude du NER plus simple dans les bactéries fournit un aperçu clé du NER humain. Je propose une approche interdisciplinaire pour comprendre les détails mécaniques du NER bactérien dans les cellules vivantes. J’utiliserai une combinaison de méthodes monomoléculaires de pointe pour élucider la façon dont l’ADN est réparé à l’intérieur des cellules vivantes. J’utiliserai la microscopie super-résolution combinée pour étudier le comportement des protéines NER individuelles. Pour compléter cela, on utilisera la biochimie classique, la biologie cellulaire, la génétique, les tests smFRET, la microscopie FCS et la microscopie TIRF. Ensemble, cela fournira une compréhension complète de la voie bactérienne NER, et constituera les premières étapes vers mon objectif ultime, qui est de comprendre comment les cellules humaines réparent l’ADN. (French)
30 November 2021
0 references
Eine Fehlfunktion der DNA-Reparatur führt zu einer Ansammlung von Mutationen, die häufig zu Krebs führen. Der Nucleotide Excision Repair (NER) Pfad entfernt DNA-Läsionen, die durch UV-Licht, Zigarettenrauch und chemische Mutagene verursacht werden. NER ist hoch erhalten, und das Studium der einfacheren NER in Bakterien bietet einen wichtigen Einblick in menschliche NER. Ich schlage einen interdisziplinären Ansatz vor, um die mechanischen Details von bakteriellen NER in lebenden Zellen zu verstehen. Ich werde eine Kombination aus modernsten Single-Molekül-Methoden verwenden, um zu klären, wie DNA in lebenden Zellen repariert wird. Ich werde eine hochauflösende Mikroskopie verwenden, um das Verhalten einzelner NER-Proteine zu untersuchen. Dazu werden konventionelle Biochemie, Zellbiologie, Genetik, smFRET-Assays, FCS- und TIRF-Mikroskopie verwendet. Gemeinsam wird dies ein umfassendes Verständnis des bakteriellen NER-Wegs liefern und die ersten Schritte in Richtung meines letzten Ziels darstellen, nämlich zu verstehen, wie menschliche Zellen DNA reparieren. (German)
7 December 2021
0 references
Defecte DNA-reparatie leidt tot een accumulatie van mutaties, wat vaak resulteert in kanker. De Nucleotide Excision Repair (NER) route verwijdert een DNA laesies veroorzaakt door UV-licht, sigarettenrook en chemische mutagene stoffen. NER is zeer geconserveerd, en het bestuderen van de eenvoudigere NER in bacteriën geeft een belangrijk inzicht in menselijke NER. Ik stel een interdisciplinaire aanpak voor om de Mechanistische details van bacteriële NER in levende cellen te begrijpen. Ik zal een combinatie van geavanceerde single-molecule methoden gebruiken om te verduidelijken hoe DNA wordt gerepareerd in levende cellen. Ik zal super-resolutie microscopie gecombineerd gebruiken om het gedrag van individuele NER-eiwitten te bestuderen. Om dit aan te vullen, zullen conventionele biochemie, celbiologie, genetica, smFRET assays, FCS en TIRF microscopie worden gebruikt. Samen zal dit een uitgebreid begrip bieden van de bacteriële NER-route en de eerste stappen vormen naar mijn uiteindelijke doel, namelijk begrijpen hoe menselijke cellen DNA repareren. (Dutch)
16 December 2021
0 references
Identifiers
POIR.04.04.00-00-1CA9/16
0 references