Graph-based method of modelling and analysis of system biology data (Q3056374): Difference between revisions
Jump to navigation
Jump to search
(Removed claim: co-financing rate (P837): 0.85 percent) |
(Changed an Item: modifying co-finance rate with the percentage) |
||||||
Property / co-financing rate | |||||||
85.0 percent
| |||||||
Property / co-financing rate: 85.0 percent / rank | |||||||
Normal rank |
Revision as of 11:52, 27 September 2021
Project Q3056374 in Latvia
Language | Label | Description | Also known as |
---|---|---|---|
English | Graph-based method of modelling and analysis of system biology data |
Project Q3056374 in Latvia |
Statements
535,398.94 Euro
0 references
629,881.11 Euro
0 references
85.0 percent
0 references
21 February 2017
0 references
31 December 2019
0 references
Latvijas Universitātes Matemātikas un informātikas institūts
0 references
Projekta kopsavilkuma aprakstsStrauja t.s. “high-throughput” tehnoloģiju attīstība bioinformātikas datu ieguvei ir nodrošinājusi to, ka ir pieejamas liela apjoma datu kopas, kuras satur vērtīgu informāciju sarežģītu bioloģisku sistēmu modelēšanai un to regulējošo bioloģisko procesu izpratnei – piemēram, tādu sistēmu, kā dažādu šūnu un starpšūnu procesus aprakstošu “omics” tīklu un šādu tīklu savstarpējās mijiedarbības izpratnei. Tajā pat laikā, šādu datu kopu lielā apjoma un tajās ietvertās informācijas sarežģītības dēļ, noderīgas informācijas ieguve no šādām datu kopām ir ļoti netriviāla problēma, un šim nolūkam izmantotās metodes parasti ir ierobežotas ar statistisko vai mašīnmācīšanās metožu iespējām.Šī projekta mērķis ir izstrādāt jaunas inovatīvas datu analīzes metodes, kas balstīsies uz kombinētu dažādu grafu analīzes algoritmu un grafu vizualizācijas metožu izmantošanu. Projekta autoru jau veiktie pētījumi ir demonstrējuši šādas pieejas noderīgumu proteīnu homoloģijas izpētei, un mēs uzskatām, ka šāda pieeja varētu būt ļoti noderīga arī cita veida bioinformātikas datu kopu analīzei. Projekta ietvaros ir plānots koncentrēties uz gēnu regulācijas procesu dinamikas analīzi, hromatīna interakciju dinamikas analīzi, epigenomisko marķieru prognozēšanu un pētījumiem par procesiem, kas nosaka dažāda veida šūnu atšķirīgumu. Plašākā perspektīvā mēs sagaidām, ka izstrādātā metodoloģija labi papildinās esošās bioinformātikas datu analīzes metodes.Atslēgvārdi: Bioinformātika; Bioloģisko sistēmu modelēšana; Grafu algoritmi; Datizrace; Datu vizualizācija.Informācija, kas projekta iesnieguma apstiprināšanas gadījumā tiks publicēta Eiropas Savienības fondu tīmekļa vietnē www.esfondi.lvStrauja t.s. “high-throughput” tehnoloģiju attīstība bioinformātikas datu ieguvei ir nodrošinājusi to, ka ir pieejamas liela apjoma datu kopas, kuras satur vērtīgu informāciju sarežģītu bioloģisku sistēmu modelēšanai un to regulējošo bioloģisko procesu izpratnei.Šī projekta mērķis ir izstrādāt jaunas inovatīvas datu analīzes metodes, kas balstīsies uz kombinētu dažādu grafu analīzes algoritmu un grafu vizualizācijas metožu izmantošanu.Pētījumi tiks koncentrēti uz trim konkrētām bioinformātikas problēmām ar augstu zinātnisko un praktisko nozīmību, kuru izpētei šobrīd tiek veltīta liela uzmanība, un, kur pēc mūsu domām, mēs varam sniegt nozīmīgu ieguldījumu: 1) proteoma kvantitatīva raksturošana no gēnu ekspresijas datiem; 2) hromatīna interakcijas tīklu analīze; 3) gēnu regulācijas tīklu dinamikas un evolūcijas analīze.Pētniecības veids: rūpnieciskie (100%) pētījumi.Projekta veids nav saistīts ar ekonomisko aktivitāti.Projekts ir starpdisciplinārs un tiks izpildīts šādās nozarēs:- Datoru un informācijas zinātnes (OECD-FOS-1.2);- Bioloģijas zinātnes (OECD-FOS-1.6).Galvenās aktivitātes:1) Pētījumi par proteoma kvantitatīvo raksturojumu iegūšanu no gēnu ekspresijas datiem (WP1).2) Pētījumi par hromatīna interekcijas tīklu struktūru un tās atkarības no šūnu tipiem (WP2).3) Pētījumi par gēnu regulācijas tīklu dinamikas un evolūcijas analīzi (WP3).Šīs trīs galvenās aktivitātes atbilst iepriekšminēto konkrēto bioinformātikas problēmu izpētei. Bez tām projekta darba plāns ietver divas papildinošas aktivitātes saistītas ar datu kopu sagatavošanu un rezultātu bioloģisko validāciju (WP4) un programmatūras komponenšu izstrādi (WP5).Sagaidāmie rezultāti:1) Metodes proteīnu koncentrācijas noteikšanai audu un šūnu paraugos no transkriptomikas datiem.2) Metodes integrētai hromatīna interakcijas, epigenomikas un gēnu regulācijas datu analīzei.3) Metodes automatizētai gēnu regulācijas motīvu identificēšanai no mikromasīvu un NGS eksperimentu datiem un gēnu regulācijas motīvu evolūcijas analīzei.“Projekta kopējas izmaksas: 634 744,42 EUR (attiecināmās izmaksas: 633 384,42 EUR, ERAF finansējums: 538 376,74 EUR)”. Projekta ilgums: 35 mēneši.Projekta īstenošanas ilgums 21.02.2017. - 31.12.2019. (Latvian)
0 references
Project summary descriptionThe so-called “high-throughput” technology development for the acquisition of bioinformatics data has led to the availability of large amounts of data sets that contain valuable information for modelling complex biological systems and understanding the biological processes that regulate it – for example, the understanding of systems like “omics” describing various cellular and intercellular processes and the interaction between such networks. At the same time, due to the large volume of such datasets and the complexity of the information contained therein, the acquisition of useful information from such datasets is a very untrivial problem, and the methods used for this purpose are usually limited to the possibilities of statistical or machine learning methods.The aim of this project is to develop new innovative data analysis methods based on the use of a combination of graphic analysis algorithms and graphic visualisation methods. The studies already carried out by the project authors have demonstrated the usefulness of such an approach for researching protein homology, and we believe that this approach could also be very useful for the analysis of other types of bioinformatics datasets. Within the framework of the project it is planned to focus on analysis of gene regulation process dynamics, analysis of chromatin intersection dynamics, prediction of epigenomic markers and studies on processes that determine different types of cell distinctiveness. From a broader perspective, we expect that the methodology developed will well complement existing methods of analysis of bioinformatics data. Bioinformatics; Modelling of biological systems; Graphic algorithms; Data mining; Data visualisation.Information that will be published on the web site of the European Union funds www.esfondi.lvStrauja in case of approval of a project application, the so-called “high-throughput” technology development for bioinformatics data acquisition has ensured the availability of large-scale datasets containing valuable information for modelling complex biological systems and understanding their regulatory biological processes.The aim of this project is to develop new innovative data analysis methods that will be based on a combination of different graph analysis algorithms and the understanding of the three graphs for the understanding of the biological processes.The aim of this project is to develop new innovative data analysis methods that will be based on a combination of different graph analysis algorithms and the understanding of the three graphs in terms of information, where we will focus on the specific challenges of bio-visual, and to develop new innovative methods of data analysis based on a combination of different graphics analysis algorithms and graphs, where we will focus on the need to focus on the specific problems of bio-visual, and where we will focus on the use of the scientific methods. 1) Quantitative characterisation of the proteasome from gene expression data; 2) Analysis of chromatin intermediation networks; 3) Analysis of the dynamics and evolution of gene regulation networks.Type of research: Industrial research (100 %) The project type is not related to economic activity.The project is interdisciplinary and will be carried out in the following fields:- Computer and Information Science (OECD-FOS-1.2);- Biology sciences (OECD-FOS-1.6).Key activities:1) Studies on the quantitative characterisation of the protagonists from gene expression data (WP1).2) Studies on chromatin interaction network structure (GWP) for the specific domains of the networks (WP) for specific problem characterisation of the proteoma from gene expression data (WP1).2) Studies on chromatin interaction network structure 3 and the dynamics of specific problems of the above-mentioned network (WP.2). In addition, the project work plan includes two complementary activities related to the production of datasets and biovalidation of results (WP4) and software components (WP5).Project results:1) Methods for detecting protein concentrations in tissue and cell samples from transcript data.2) Methods for integrated chromatin interaction, epigenomics and gene regulation data analysis.3) Methods for automated gene regulation identification from micromass and NGS data for integrated chromatin intermediation, epigenomic and gene regulation data analysis.3) Methods for automated gene regulation identification from micromass and NGS experimental design data. EUR 634744,42 (eligible costs: EUR 633384,42, ERDF contribution: EUR 538376,74’. Duration of the project: 35 months. Duration of project implementation 21.02.2017. 31.12.2019 (English)
15 July 2021
0 references
Raiņa bulvāris 29, Rīga, LV-1050
0 references
Identifiers
1.1.1.1/16/A/135
0 references