Q3056426 (Q3056426): Difference between revisions
Jump to navigation
Jump to search
(Changed an Item: Edited by the beneficiary bot - attach the beneficiary based on the string) |
(Created claim: summary (P836): The general objective of the project is to promote the development and implementation of energy-efficient electromagnetic technologies to reduce the consumption of primary energy resources and greenhouse gas emissions in the production of materials and renewable energy. The specific objectives of the project are to develop numerical modelling approaches for the effective resolution of complex industrial magnetohydrodynamics (MHD) problems and to...) |
||||||||||||||
Property / summary | |||||||||||||||
The general objective of the project is to promote the development and implementation of energy-efficient electromagnetic technologies to reduce the consumption of primary energy resources and greenhouse gas emissions in the production of materials and renewable energy. The specific objectives of the project are to develop numerical modelling approaches for the effective resolution of complex industrial magnetohydrodynamics (MHD) problems and to explore complex physical processes in specific industrial installations.This non-economic project will provide a multi-directional contribution to the priorities of RIS3: No 3 ‘Increasing energy efficiency including technological innovation’; No.4 “Modern and modern ICT system in the private sector” and No.6 “Developed knowledge base and human capital in knowledge areas that are important in the process of economic transformation”. The industrial research to be carried out shall correspond to NACE Rev. 2 code 72.19 ‘Handing other studies in natural sciences and engineering’. The project is mulidisciplinary and conforms to the fields of science 1.2. ‘IT and programming; 1.3. “Physics” and 2.3. “Mechanical Engineering and Mechanics” Complex phenomena associated with electromagnetic effects on conductive fluids in industrial technologies and equipment cannot be described by simple models – multiphysical, complex and non-linear models are required. Thus the project will develop new and improved models of interaction between flows of interest and electromagnetic field, clarify the interaction of various processes in the field of industrially significant magnetohydrodynamic technologies and create new generalised multiphysical models that adequately reflect the complex technological phenomena studied.Model numerical research will develop open-access code software in OpenFOAM and Elmer environments and integrate them into a common bibliote of programs. For verification of numerical models scripts in commercial modelling programs (ANSYS) will be created. Bolzmann’s cell method software will be developed for modelling biphasic environmental flows in an electromagnetic field. Experimental verification of results will be performed, including using neutron and ultrasound measurement techniques. By analysing the datasets for the studied technologies obtained as a result of the parametric studies of targeted multi-physical models, new interaction effects of non-linear system components that are expressed in qualitative and “hop-like” process changes, unstable development and significantly non-linear quantitative substance and heat exchange process depending on non-imensional process parameters will be explored.The research project is planned to be implemented within a period of 36 months from July 1 to 2022. 30 June. The total cost of the project is EUR 599625, including. EUR 554653.12 ERDF and state budget co-financing. The financing of the cooperation partner AS Latvo is EUR 240000. Electrical conductive fluid, electromagnetic exposure, turbulence, biphasic environment, numerical models, open source software. (English) | |||||||||||||||
Property / summary: The general objective of the project is to promote the development and implementation of energy-efficient electromagnetic technologies to reduce the consumption of primary energy resources and greenhouse gas emissions in the production of materials and renewable energy. The specific objectives of the project are to develop numerical modelling approaches for the effective resolution of complex industrial magnetohydrodynamics (MHD) problems and to explore complex physical processes in specific industrial installations.This non-economic project will provide a multi-directional contribution to the priorities of RIS3: No 3 ‘Increasing energy efficiency including technological innovation’; No.4 “Modern and modern ICT system in the private sector” and No.6 “Developed knowledge base and human capital in knowledge areas that are important in the process of economic transformation”. The industrial research to be carried out shall correspond to NACE Rev. 2 code 72.19 ‘Handing other studies in natural sciences and engineering’. The project is mulidisciplinary and conforms to the fields of science 1.2. ‘IT and programming; 1.3. “Physics” and 2.3. “Mechanical Engineering and Mechanics” Complex phenomena associated with electromagnetic effects on conductive fluids in industrial technologies and equipment cannot be described by simple models – multiphysical, complex and non-linear models are required. Thus the project will develop new and improved models of interaction between flows of interest and electromagnetic field, clarify the interaction of various processes in the field of industrially significant magnetohydrodynamic technologies and create new generalised multiphysical models that adequately reflect the complex technological phenomena studied.Model numerical research will develop open-access code software in OpenFOAM and Elmer environments and integrate them into a common bibliote of programs. For verification of numerical models scripts in commercial modelling programs (ANSYS) will be created. Bolzmann’s cell method software will be developed for modelling biphasic environmental flows in an electromagnetic field. Experimental verification of results will be performed, including using neutron and ultrasound measurement techniques. By analysing the datasets for the studied technologies obtained as a result of the parametric studies of targeted multi-physical models, new interaction effects of non-linear system components that are expressed in qualitative and “hop-like” process changes, unstable development and significantly non-linear quantitative substance and heat exchange process depending on non-imensional process parameters will be explored.The research project is planned to be implemented within a period of 36 months from July 1 to 2022. 30 June. The total cost of the project is EUR 599625, including. EUR 554653.12 ERDF and state budget co-financing. The financing of the cooperation partner AS Latvo is EUR 240000. Electrical conductive fluid, electromagnetic exposure, turbulence, biphasic environment, numerical models, open source software. (English) / rank | |||||||||||||||
Normal rank | |||||||||||||||
Property / summary: The general objective of the project is to promote the development and implementation of energy-efficient electromagnetic technologies to reduce the consumption of primary energy resources and greenhouse gas emissions in the production of materials and renewable energy. The specific objectives of the project are to develop numerical modelling approaches for the effective resolution of complex industrial magnetohydrodynamics (MHD) problems and to explore complex physical processes in specific industrial installations.This non-economic project will provide a multi-directional contribution to the priorities of RIS3: No 3 ‘Increasing energy efficiency including technological innovation’; No.4 “Modern and modern ICT system in the private sector” and No.6 “Developed knowledge base and human capital in knowledge areas that are important in the process of economic transformation”. The industrial research to be carried out shall correspond to NACE Rev. 2 code 72.19 ‘Handing other studies in natural sciences and engineering’. The project is mulidisciplinary and conforms to the fields of science 1.2. ‘IT and programming; 1.3. “Physics” and 2.3. “Mechanical Engineering and Mechanics” Complex phenomena associated with electromagnetic effects on conductive fluids in industrial technologies and equipment cannot be described by simple models – multiphysical, complex and non-linear models are required. Thus the project will develop new and improved models of interaction between flows of interest and electromagnetic field, clarify the interaction of various processes in the field of industrially significant magnetohydrodynamic technologies and create new generalised multiphysical models that adequately reflect the complex technological phenomena studied.Model numerical research will develop open-access code software in OpenFOAM and Elmer environments and integrate them into a common bibliote of programs. For verification of numerical models scripts in commercial modelling programs (ANSYS) will be created. Bolzmann’s cell method software will be developed for modelling biphasic environmental flows in an electromagnetic field. Experimental verification of results will be performed, including using neutron and ultrasound measurement techniques. By analysing the datasets for the studied technologies obtained as a result of the parametric studies of targeted multi-physical models, new interaction effects of non-linear system components that are expressed in qualitative and “hop-like” process changes, unstable development and significantly non-linear quantitative substance and heat exchange process depending on non-imensional process parameters will be explored.The research project is planned to be implemented within a period of 36 months from July 1 to 2022. 30 June. The total cost of the project is EUR 599625, including. EUR 554653.12 ERDF and state budget co-financing. The financing of the cooperation partner AS Latvo is EUR 240000. Electrical conductive fluid, electromagnetic exposure, turbulence, biphasic environment, numerical models, open source software. (English) / qualifier | |||||||||||||||
point in time: 15 July 2021
|
Revision as of 12:34, 15 July 2021
Project Q3056426 in Latvia
Language | Label | Description | Also known as |
---|---|---|---|
English | No label defined |
Project Q3056426 in Latvia |
Statements
346,546.99 Euro
0 references
599,562.29 Euro
0 references
1 July 2019
0 references
30 June 2022
0 references
LATVIJAS UNIVERSITĀTE
0 references
Projekta vispārīgais mērķis ir sekmēt energoefektīvu elektromagnētisko tehnoloģiju attīstīšanu un ieviešanu, lai samazinātu primāro energoresursu patēriņu un siltumnīcas gāzu emisiju materiālu ražošanā un atjaunojamo resursu enerģētikā. Projekta konkrētie mērķi ir izstrādāt skaitliskās modelēšanas pieejas efektīvai sarežģītu industriālu magnetohidrodinamikas (MHD) problēmu risināšanai un izpētīt kompleksos fizikālos procesus konkrētās industriālās iekārtās.Šis ar saimniecisko darbību nesaistītais projekts sniegs daudzvirzienu ieguldījumu RIS3 prioritātēs: Nr.3 "Energoefektivitātes paaugstināšana, kas ietver tehnoloģisko jauninājumu ieviešanu"; Nr.4 "Moderna un mūsdienu prasībām atbilstoša IKT sistēma privātajā sektorā" un Nr.6 "Attīstīta zināšanu bāze un cilvēkkapitāls zināšanu jomās, kas ir nozīmīgas tautsaimniecības transformācijas procesā". Veicamie rūpnieciskie pētījumi atbilst NACE 2. red. kodam 72.19 “Pārējo pētījumu veikšana dabaszinātnēs un inženierzinātnēs”. Projekts ir mulidisciplinārs un atbilst zinātnes nozarēm 1.2. “IT un programmēšana; 1.3.. “Fizika” un 2.3. “Mašīnbūve un mehānika”Ar elektromagnētisko iedarbību uz vadošiem šķidrumiem saistītos kompleksos fenomenus industriālās tehnoloģijās un iekārtās nevar aprakstīt ar vienkāršiem modeļiem - nepieciešami multifizikāli, kompleksi un nelineāri modeļi. Tādēl sajā projektā tiks izstrādāti jauni un pilnveidoti interesējošo plūsmu un elektromagnētiskā lauka mijiedarbības modeļi, precizēta dažādo procesu mijiedarbība industriāli nozīmīgu magnetohidrodinamisko tehnoloģiju jomā un izveidoti jauni vispārināti multifizikāli modeļi, kas adekvāti atspoguļo pētāmos kompleksos tehnoloģiskos fenomenus.Modeļu skaitliskai izpētei tiks attīstīta brīvpieejas koda programmatūra OpenFOAM un Elmer vidēs un veikta to integrācija kopējā programmu bibliotekā. Skaitlisko modeļu verifikācijai tiks veidoti skripti komerciālās modelēšanas programmās (ANSYS). Divfāzu vides plūsmu modelēšanai elektromagnētiskajā laukā tiks attīstīta Bolcmaņa šūnu metodes programmatūra. Tiks veikta rezultātu eksperimentālā verifikācija, t. sk. izmantojot neitronogrāfijas un ultraskaņas mērījumu tehnoloģijas. Analizējot mērķtiecīgu multifizikālo modeļu parametrisko studiju rezultātā iegūtās datu kopas pētāmajām tehnoloģijām, tiks meklēti jauni nelineārās sistēmas komponenšu mijiedarbības efekti, kas izpaužas kvalitatīvās un “lēcienveida” procesa rakstura izmaiņās, nestabilitāšu attīstībā un būtiski nelineārās kvantitatīvās vielas un siltuma apmaiņas procesu atkarībās no bezimensionālajiem procesa parametriem.Pētniecības projektu paredzēts īstenot 36 mēnešu periodā no 2019.g. 1. jūlija līdz 2022.g . 30. jūnijam. Projekta kopējās izmaksas ir 599 625 EUR, t.sk. 554 653.12 EUR ERAF un valsts budžeta līdzfinansējums. Sadarbības partnera AS Latvo daļa finansējumā ir 240 000 EUR.Atslēgas vārdi: elektrovadošs šķidrums, elektromagnētiskā iedarbība, turbulence, divfāzu vide, skaitliskie modeļi, atvērtā koda programmatūra. (Latvian)
0 references
The general objective of the project is to promote the development and implementation of energy-efficient electromagnetic technologies to reduce the consumption of primary energy resources and greenhouse gas emissions in the production of materials and renewable energy. The specific objectives of the project are to develop numerical modelling approaches for the effective resolution of complex industrial magnetohydrodynamics (MHD) problems and to explore complex physical processes in specific industrial installations.This non-economic project will provide a multi-directional contribution to the priorities of RIS3: No 3 ‘Increasing energy efficiency including technological innovation’; No.4 “Modern and modern ICT system in the private sector” and No.6 “Developed knowledge base and human capital in knowledge areas that are important in the process of economic transformation”. The industrial research to be carried out shall correspond to NACE Rev. 2 code 72.19 ‘Handing other studies in natural sciences and engineering’. The project is mulidisciplinary and conforms to the fields of science 1.2. ‘IT and programming; 1.3. “Physics” and 2.3. “Mechanical Engineering and Mechanics” Complex phenomena associated with electromagnetic effects on conductive fluids in industrial technologies and equipment cannot be described by simple models – multiphysical, complex and non-linear models are required. Thus the project will develop new and improved models of interaction between flows of interest and electromagnetic field, clarify the interaction of various processes in the field of industrially significant magnetohydrodynamic technologies and create new generalised multiphysical models that adequately reflect the complex technological phenomena studied.Model numerical research will develop open-access code software in OpenFOAM and Elmer environments and integrate them into a common bibliote of programs. For verification of numerical models scripts in commercial modelling programs (ANSYS) will be created. Bolzmann’s cell method software will be developed for modelling biphasic environmental flows in an electromagnetic field. Experimental verification of results will be performed, including using neutron and ultrasound measurement techniques. By analysing the datasets for the studied technologies obtained as a result of the parametric studies of targeted multi-physical models, new interaction effects of non-linear system components that are expressed in qualitative and “hop-like” process changes, unstable development and significantly non-linear quantitative substance and heat exchange process depending on non-imensional process parameters will be explored.The research project is planned to be implemented within a period of 36 months from July 1 to 2022. 30 June. The total cost of the project is EUR 599625, including. EUR 554653.12 ERDF and state budget co-financing. The financing of the cooperation partner AS Latvo is EUR 240000. Electrical conductive fluid, electromagnetic exposure, turbulence, biphasic environment, numerical models, open source software. (English)
15 July 2021
0 references
Jelgavas iela 3, Rīga, LV-1004
0 references
Ganību dambis 53, Rīga, LV-1005
0 references
Identifiers
1.1.1.1/18/A/108
0 references