Q2727821 (Q2727821): Difference between revisions
Jump to navigation
Jump to search
(Changed an Item: Edited by the materialized bot - inferring region from the coordinates) |
(Created claim: summary (P836): The Casmouse project comprises research in the field of (EPI) genomic engineering and gene regulation, which has significantly improved the emergence of molecular tools based on CRISPR/Cas9, and allows for a precise specification of the enzymes of a nucleus or modulators of the gene to practically any place of genome, and to manipulate the desired genes in cell lines and food simulant. Planned research activities will lead to the design of a mod...) |
||||||||||||||
Property / summary | |||||||||||||||
The Casmouse project comprises research in the field of (EPI) genomic engineering and gene regulation, which has significantly improved the emergence of molecular tools based on CRISPR/Cas9, and allows for a precise specification of the enzymes of a nucleus or modulators of the gene to practically any place of genome, and to manipulate the desired genes in cell lines and food simulant. Planned research activities will lead to the design of a modular set of molecular tools for gene regulation and (EIP) genomic engineering based on the principles of fusion of components CRISPR/Cas9 systems to refer to a specific genomic locus, or targeted gene activation domain. In the principles of synthetic biology, these tools shall be reflected in suitable temporary expression vectors or stable installation in the model genome: cell lines and transgeic mice. At the same time, this system also provides a strong platform for the manipulation of genome in order to manipulate the production of immunoglobulin G or reporter reporters based on infra-red fluorescent proteins, which will be significant in addressing specific biological problems and commercialising results. In parallel with development, system elements will be used in research into epigenetics through the glycoglobe glycosides, the associated inflammatory processes and the neuroophysiology, which are the current scientific focal points of the partners, and can be combined with the need for the tools described. (English) | |||||||||||||||
Property / summary: The Casmouse project comprises research in the field of (EPI) genomic engineering and gene regulation, which has significantly improved the emergence of molecular tools based on CRISPR/Cas9, and allows for a precise specification of the enzymes of a nucleus or modulators of the gene to practically any place of genome, and to manipulate the desired genes in cell lines and food simulant. Planned research activities will lead to the design of a modular set of molecular tools for gene regulation and (EIP) genomic engineering based on the principles of fusion of components CRISPR/Cas9 systems to refer to a specific genomic locus, or targeted gene activation domain. In the principles of synthetic biology, these tools shall be reflected in suitable temporary expression vectors or stable installation in the model genome: cell lines and transgeic mice. At the same time, this system also provides a strong platform for the manipulation of genome in order to manipulate the production of immunoglobulin G or reporter reporters based on infra-red fluorescent proteins, which will be significant in addressing specific biological problems and commercialising results. In parallel with development, system elements will be used in research into epigenetics through the glycoglobe glycosides, the associated inflammatory processes and the neuroophysiology, which are the current scientific focal points of the partners, and can be combined with the need for the tools described. (English) / rank | |||||||||||||||
Normal rank | |||||||||||||||
Property / summary: The Casmouse project comprises research in the field of (EPI) genomic engineering and gene regulation, which has significantly improved the emergence of molecular tools based on CRISPR/Cas9, and allows for a precise specification of the enzymes of a nucleus or modulators of the gene to practically any place of genome, and to manipulate the desired genes in cell lines and food simulant. Planned research activities will lead to the design of a modular set of molecular tools for gene regulation and (EIP) genomic engineering based on the principles of fusion of components CRISPR/Cas9 systems to refer to a specific genomic locus, or targeted gene activation domain. In the principles of synthetic biology, these tools shall be reflected in suitable temporary expression vectors or stable installation in the model genome: cell lines and transgeic mice. At the same time, this system also provides a strong platform for the manipulation of genome in order to manipulate the production of immunoglobulin G or reporter reporters based on infra-red fluorescent proteins, which will be significant in addressing specific biological problems and commercialising results. In parallel with development, system elements will be used in research into epigenetics through the glycoglobe glycosides, the associated inflammatory processes and the neuroophysiology, which are the current scientific focal points of the partners, and can be combined with the need for the tools described. (English) / qualifier | |||||||||||||||
point in time: 3 June 2021
|
Revision as of 09:44, 3 June 2021
Project Q2727821 in Croatia
Language | Label | Description | Also known as |
---|---|---|---|
English | No label defined |
Project Q2727821 in Croatia |
Statements
5,955,440.01 Croatian kuna
0 references
7,091,972.07 Croatian kuna
0 references
85.0 percent
0 references
20 December 2019
0 references
20 December 2022
0 references
Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet
0 references
10000
0 references
Projekt CasMouse obuhvaća istraživanja u području (epi)genomskog inženjerstva i genske regulacije, koje je bitno unaprijedila pojava molekularnih alata temeljenih na CRISPR/Cas9 sustavu, a omogućavaju precizno navođenje enzima nukleaza ili pak modulatora ekspresije gena na gotovo bilo koje mjesto u genomu, time i manipulaciju funkcije željenih gena u staničnim linijama i modelnim organizmima. Planirane istraživačke aktivnosti rezultirat će konstrukcijom modularnog seta molekularnih alata za gensku regulaciju i (epi)genomsko inženjerstvo temeljenih na principima fuzije komponenti CRISPR/Cas9 sustava za navođenje na određeni genomski lokus te funkcionalnih domena za aktivaciju ili represiju ciljanih gena. Na principima sintetičke biologije ovi alati će se slagati u odgovarajuće vektore za privremenu ekspresiju ili stabilnu ugradnju u genom modela: staničnih linija i transgeničnih miševa. Ovaj sustav ujedno predstavlja i snažnu platformu za manipulaciju genoma u svrhu manipulacije proizvodnje imunoglobulina G ili reporterskih sustava temeljenih na infracrvenim fluorescentnim proteinima, što će biti značajno u rješavanju konkretnih bioloških problema i komercijalizaciji rezultata. Paralelno s razvojem, elementi sustava će se koristiti u istraživanju epigenetike glikozilacije imunoglobulina, s time povezanih upalnih procesa te neurofiziologije, što su trenutni znanstveni fokusi partnera, a mogu se ujediniti potrebom za opisanim alatima. (Croatian)
0 references
The Casmouse project comprises research in the field of (EPI) genomic engineering and gene regulation, which has significantly improved the emergence of molecular tools based on CRISPR/Cas9, and allows for a precise specification of the enzymes of a nucleus or modulators of the gene to practically any place of genome, and to manipulate the desired genes in cell lines and food simulant. Planned research activities will lead to the design of a modular set of molecular tools for gene regulation and (EIP) genomic engineering based on the principles of fusion of components CRISPR/Cas9 systems to refer to a specific genomic locus, or targeted gene activation domain. In the principles of synthetic biology, these tools shall be reflected in suitable temporary expression vectors or stable installation in the model genome: cell lines and transgeic mice. At the same time, this system also provides a strong platform for the manipulation of genome in order to manipulate the production of immunoglobulin G or reporter reporters based on infra-red fluorescent proteins, which will be significant in addressing specific biological problems and commercialising results. In parallel with development, system elements will be used in research into epigenetics through the glycoglobe glycosides, the associated inflammatory processes and the neuroophysiology, which are the current scientific focal points of the partners, and can be combined with the need for the tools described. (English)
3 June 2021
0 references
Identifiers
KK.01.1.1.04.0085
0 references