Development and implementation of effective air pollution forecast and monitoring, based on AI techniques using a wide measurement network. (Q77612): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed an Item)
(‎Changed an Item: Label in wikidata changed)
label / enlabel / en
 
Development and implementation of effective air pollution forecast and monitoring, based on AI techniques using a wide measurement network.

Revision as of 07:03, 18 February 2020

Project in Poland financed by DG Regio
Language Label Description Also known as
English
Development and implementation of effective air pollution forecast and monitoring, based on AI techniques using a wide measurement network.
Project in Poland financed by DG Regio

    Statements

    0 references
    3,399,244.5 zloty
    0 references
    815,818.6799999999 Euro
    13 January 2020
    0 references
    4,522,020.0 zloty
    0 references
    1,085,284.8 Euro
    13 January 2020
    0 references
    75.17 percent
    0 references
    1 September 2017
    0 references
    31 August 2020
    0 references
    AIRLY SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ
    0 references

    50°2'48.8"N, 19°59'49.9"E
    0 references
    Numer_referencyjny_programu_pomocowego: SA.41471(2015/X) Przeznaczenie_pomocy_publicznej: art. 25 rozporządzenia KE nr 651/2014 z dnia 17 czerwca 2014 r. uznające niektóre rodzaje pomocy za zgodne z rynkiem wewnętrznym w stosowaniu art. 107 i 108 Traktatu (Dz. Urz. UE L 187/1 z 26.06.2014). Przedmiotem niniejszego projektu jest opracowanie i wdrożenie innowacyjnych metod obliczeniowych w obszarze sztucznej inteligencji i uczenia maszynowego, dotyczących analizy, korekty, przetwarzania i prognozowania informacji dotyczącej zanieczyszczenia powietrza. Dane do analizy zostaną dostarczone za pomocą sieci tanich czujników zanieczyszczenia. Gęsto rozmieszczona sieć takich urządzeń pomiarowych (docelowo 2-3 czujniki/km^2 obszaru objętego pomiarem) rozwiązuje trzy problemy: jakości danych (dzięki ciągłemu oznaczaniu poziomu zanieczyszczeń przy użyciu danych z wielu sensorów, co pozwala na zmniejszenie błędu mierzonej wartości oraz umożliwia korektę danych w przypadku uszkodzenia któregoś czujnika), natychmiastowej identyfikacji lokalnych źródeł zanieczyszczenia oraz udostępniania danych z miejsc dotychczas nieobjętych pomiarem (np. z obszarów zabudowy jednorodzinnej, generującej niską emisję i terenów oddalonych od precyzyjnych lecz drogich stacji pomiarowych). Powyższe trzy aspekty są krytyczne dla jakości prognozy i po raz pierwszy umożliwiają ocenę efektywności działań, mających na celu ochronę jakości powietrza. (Polish)
    0 references

    Identifiers

    POIR.01.01.01-00-0049/17
    0 references