Development of a universal transparent electrode for photovoltaic cells I, II and III. (Q107908): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Removed claim: summary (P836): The aim of the project is to develop a technology for the production of a surface electrode on photovoltaic cells with the use of the equipment of the replacement operation in an integrated assembly of reactors. This will be achieved through the development of research to develop new working conditions for ALD and hydrothermal reactors (assisted by a microwave) in one integrated technology string, for the final generation of nanostructures to...)
(‎Created claim: summary (P836): The aim of the project is to develop the technology of producing surface electrode on photovoltaic cells using a proprietary process of replacement work in an integrated reactor assembly. This will be achieved through research work to develop new operating conditions for ALD and hydrothermal reactors (microwave-supported) in an integrated technological sequence, for the final production of nanostructures improving the conversion of solar energy...)
Property / summary
 
The aim of the project is to develop the technology of producing surface electrode on photovoltaic cells using a proprietary process of replacement work in an integrated reactor assembly. This will be achieved through research work to develop new operating conditions for ALD and hydrothermal reactors (microwave-supported) in an integrated technological sequence, for the final production of nanostructures improving the conversion of solar energy to electricity in PV cells. The project will focus on research activities involving: (i) Development of ZnO nanopillar growth technology on a full-size cell of PV I, II and III generation; (ii) preparation of laboratory environment and (iii) doped coating (experimentally selected compounds e.g. Mg) ZnO and upper contact layer ZnO:Al and sapphire protective layers using an integrated reactor assembly. During the project, a method of producing transparent electrode with unique functional functions (including Anti reflexes, UV blocker, Emiter, transparent electrode) will be developed as part of the integrated technological sequence (ALD/Hydrotermal/ALD). The result of the project will be technology from the area of photovoltaics, resulting in innovative cells I, II and III, containing the structure of 3D ZnO posts and ZnO layers:Mg, ZnO:Al., ZnO:XX, replacing the use of energy-intensive and material-intensive techniques and technology of diffusion and surface metalisation of PV cells. As a result of the project, a non-toxic process of deposition of ZnO nanopillars, the base technology of which has been developed and patented by the Institute of Physics of the Polish Academy of Sciences and in the form of a licence made available to CBRTP S.A. The product will be an alternative to current technologies of cell production, with a very high potential to reduce their production costs, therefore its recipients will be both module manufacturers and fires themselves. (English)
Property / summary: The aim of the project is to develop the technology of producing surface electrode on photovoltaic cells using a proprietary process of replacement work in an integrated reactor assembly. This will be achieved through research work to develop new operating conditions for ALD and hydrothermal reactors (microwave-supported) in an integrated technological sequence, for the final production of nanostructures improving the conversion of solar energy to electricity in PV cells. The project will focus on research activities involving: (i) Development of ZnO nanopillar growth technology on a full-size cell of PV I, II and III generation; (ii) preparation of laboratory environment and (iii) doped coating (experimentally selected compounds e.g. Mg) ZnO and upper contact layer ZnO:Al and sapphire protective layers using an integrated reactor assembly. During the project, a method of producing transparent electrode with unique functional functions (including Anti reflexes, UV blocker, Emiter, transparent electrode) will be developed as part of the integrated technological sequence (ALD/Hydrotermal/ALD). The result of the project will be technology from the area of photovoltaics, resulting in innovative cells I, II and III, containing the structure of 3D ZnO posts and ZnO layers:Mg, ZnO:Al., ZnO:XX, replacing the use of energy-intensive and material-intensive techniques and technology of diffusion and surface metalisation of PV cells. As a result of the project, a non-toxic process of deposition of ZnO nanopillars, the base technology of which has been developed and patented by the Institute of Physics of the Polish Academy of Sciences and in the form of a licence made available to CBRTP S.A. The product will be an alternative to current technologies of cell production, with a very high potential to reduce their production costs, therefore its recipients will be both module manufacturers and fires themselves. (English) / rank
 
Normal rank
Property / summary: The aim of the project is to develop the technology of producing surface electrode on photovoltaic cells using a proprietary process of replacement work in an integrated reactor assembly. This will be achieved through research work to develop new operating conditions for ALD and hydrothermal reactors (microwave-supported) in an integrated technological sequence, for the final production of nanostructures improving the conversion of solar energy to electricity in PV cells. The project will focus on research activities involving: (i) Development of ZnO nanopillar growth technology on a full-size cell of PV I, II and III generation; (ii) preparation of laboratory environment and (iii) doped coating (experimentally selected compounds e.g. Mg) ZnO and upper contact layer ZnO:Al and sapphire protective layers using an integrated reactor assembly. During the project, a method of producing transparent electrode with unique functional functions (including Anti reflexes, UV blocker, Emiter, transparent electrode) will be developed as part of the integrated technological sequence (ALD/Hydrotermal/ALD). The result of the project will be technology from the area of photovoltaics, resulting in innovative cells I, II and III, containing the structure of 3D ZnO posts and ZnO layers:Mg, ZnO:Al., ZnO:XX, replacing the use of energy-intensive and material-intensive techniques and technology of diffusion and surface metalisation of PV cells. As a result of the project, a non-toxic process of deposition of ZnO nanopillars, the base technology of which has been developed and patented by the Institute of Physics of the Polish Academy of Sciences and in the form of a licence made available to CBRTP S.A. The product will be an alternative to current technologies of cell production, with a very high potential to reduce their production costs, therefore its recipients will be both module manufacturers and fires themselves. (English) / qualifier
 
point in time: 17 October 2020
Timestamp+2020-10-17T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

Revision as of 17:15, 17 October 2020

Project in Poland financed by DG Regio
Language Label Description Also known as
English
Development of a universal transparent electrode for photovoltaic cells I, II and III.
Project in Poland financed by DG Regio

    Statements

    0 references
    3,627,441.5 zloty
    0 references
    870,585.96 Euro
    13 January 2020
    0 references
    4,937,311.98 zloty
    0 references
    1,184,954.88 Euro
    13 January 2020
    0 references
    73.47 percent
    0 references
    1 October 2016
    0 references
    31 December 2018
    0 references
    CENTRUM BADAŃ I ROZWOJU TECHNOLOGII DLA PRZEMYSŁU S.A.
    0 references
    0 references

    52°14'1.3"N, 21°4'17.0"E
    0 references
    Celem projektu jest opracowanie technologii wytwarzania elektrody powierzchniowej na ogniwach fotowoltaicznych przy wykorzystaniu autorskiego procesu zamiennej pracy w zintegrowanym zespole reaktorów. Cel ten zostanie osiągnięty dzięki realizacji prac badawczych polegających na opracowaniu nowych warunków pracy reaktorów ALD i Hydrotermalnych (wspomaganych mikrofalowo) w jednym w zintegrowanym ciągu technologicznym, dla finalnego wytwarzania nanostruktur poprawiających parametry konwersji energii słonecznej na elektryczną w ogniwach PV. Przedmiotem projektu będą prace badawcze obejmujące: (i) opracowanie technologii wzrostu nanosłupków ZnO na pełnowymiarowym ogniwie PV I, II i III generacji; (ii) przygotowanie środowiska laboratoryjnego i (iii) pokrycie domieszkowaną (eksperymentalnie dobieranymi związkami np. Mg) warstwą ZnO i górną warstwą kontaktową ZnO:Al oraz szafirowymi warstwami ochronnymi przy wykorzystaniu zintegrowanego zespołu reaktorów. W trakcie projektu zostanie opracowana metoda wytwarzania elektrody transparentnej o unikalnych funkcjach użytkowych (w tym Anty refleks, UV bloker, Emiter, elektroda transparentna), w ramach zintegrowanego ciągu technologicznego (ALD/Hydrotermal/ALD). Rezultatem projektu będzie technologia z obszaru fotowoltaiki, której efektem są innowacyjne ogniwa I, II i III generacji, zawierające strukturę 3D słupków ZnO i warstw ZnO:Mg, ZnO:Al., ZnO:XX, zastępujące stosowanie energochłonnych i materiałochłonnych technik i technologii dyfuzji oraz metalizacji powierzchniowej ogniw PV. W wyniku projektu zostanie zastosowany nietoksyczny proces osadzania nanosłupków ZnO, którego technologia bazowa została opracowana i opatentowana przez Instytut Fizyki PAN oraz w formie licencji udostępniona CBRTP S.A. Produkt będzie stanowić alternatywę dla obecnie stosowanych technologii wytwarzania ogniw, z bardzo dużym potencjałem ograniczania kosztów ich wytwarzania, dlatego też jego odbiorcami będą zarówno producenci modułów, jak i samych ogni (Polish)
    0 references
    The aim of the project is to develop the technology of producing surface electrode on photovoltaic cells using a proprietary process of replacement work in an integrated reactor assembly. This will be achieved through research work to develop new operating conditions for ALD and hydrothermal reactors (microwave-supported) in an integrated technological sequence, for the final production of nanostructures improving the conversion of solar energy to electricity in PV cells. The project will focus on research activities involving: (i) Development of ZnO nanopillar growth technology on a full-size cell of PV I, II and III generation; (ii) preparation of laboratory environment and (iii) doped coating (experimentally selected compounds e.g. Mg) ZnO and upper contact layer ZnO:Al and sapphire protective layers using an integrated reactor assembly. During the project, a method of producing transparent electrode with unique functional functions (including Anti reflexes, UV blocker, Emiter, transparent electrode) will be developed as part of the integrated technological sequence (ALD/Hydrotermal/ALD). The result of the project will be technology from the area of photovoltaics, resulting in innovative cells I, II and III, containing the structure of 3D ZnO posts and ZnO layers:Mg, ZnO:Al., ZnO:XX, replacing the use of energy-intensive and material-intensive techniques and technology of diffusion and surface metalisation of PV cells. As a result of the project, a non-toxic process of deposition of ZnO nanopillars, the base technology of which has been developed and patented by the Institute of Physics of the Polish Academy of Sciences and in the form of a licence made available to CBRTP S.A. The product will be an alternative to current technologies of cell production, with a very high potential to reduce their production costs, therefore its recipients will be both module manufacturers and fires themselves. (English)
    17 October 2020
    0 references

    Identifiers

    RPMA.01.02.00-14-5702/16
    0 references