High-precision techniques of milk and sub-THz bands of materials for Microelectronics (Q84175): Difference between revisions
Jump to navigation
Jump to search
(Removed claim: summary (P836): The main objective of this project.The implementation of this good will be completed.It, the asset manager will be established to benefit from that right to benefit from that survey.On the other hand, the research will also concern broadband measures based on multimodal resonant structures.The auxiiliary goal is adopting the technological approaches for the Microelectronics industry and reply by.Other good health is development of a new disast...) |
(Created claim: summary (P836): The main objective of this project will be to develop novel sensors and sensing methodologies useful to non-destructive contactless electric and magnetic characterisation of materials at millimeter and sub-THz spectra. The implementation of this goal will be two-Pronged. On one hand, the said Resonant structures will be exploited to benefit from their inherent narrow-band properties, which are particularly useful at measuring low-loss materials....) |
||||||||||||||
Property / summary | |||||||||||||||
The main objective of this project will be to develop novel sensors and sensing methodologies useful to non-destructive contactless electric and magnetic characterisation of materials at millimeter and sub-THz spectra. The implementation of this goal will be two-Pronged. On one hand, the said Resonant structures will be exploited to benefit from their inherent narrow-band properties, which are particularly useful at measuring low-loss materials. On the other hand, the research will also concern broadband measurement techniques based on multimode Resonant structures. The auxiliary goal is adopting the technological approaches typical for the Microelectronics industry and apply them for precise fabrication of novel Resonant cavities operating in the millimeter and the sub-THz bands. Another such goal is development of a new low-loss yet high dielectric constant material for dielectric posts inserted into sensing cavities. (English) | |||||||||||||||
Property / summary: The main objective of this project will be to develop novel sensors and sensing methodologies useful to non-destructive contactless electric and magnetic characterisation of materials at millimeter and sub-THz spectra. The implementation of this goal will be two-Pronged. On one hand, the said Resonant structures will be exploited to benefit from their inherent narrow-band properties, which are particularly useful at measuring low-loss materials. On the other hand, the research will also concern broadband measurement techniques based on multimode Resonant structures. The auxiliary goal is adopting the technological approaches typical for the Microelectronics industry and apply them for precise fabrication of novel Resonant cavities operating in the millimeter and the sub-THz bands. Another such goal is development of a new low-loss yet high dielectric constant material for dielectric posts inserted into sensing cavities. (English) / rank | |||||||||||||||
Normal rank | |||||||||||||||
Property / summary: The main objective of this project will be to develop novel sensors and sensing methodologies useful to non-destructive contactless electric and magnetic characterisation of materials at millimeter and sub-THz spectra. The implementation of this goal will be two-Pronged. On one hand, the said Resonant structures will be exploited to benefit from their inherent narrow-band properties, which are particularly useful at measuring low-loss materials. On the other hand, the research will also concern broadband measurement techniques based on multimode Resonant structures. The auxiliary goal is adopting the technological approaches typical for the Microelectronics industry and apply them for precise fabrication of novel Resonant cavities operating in the millimeter and the sub-THz bands. Another such goal is development of a new low-loss yet high dielectric constant material for dielectric posts inserted into sensing cavities. (English) / qualifier | |||||||||||||||
point in time: 14 October 2020
|
Revision as of 12:29, 14 October 2020
Project in Poland financed by DG Regio
Language | Label | Description | Also known as |
---|---|---|---|
English | High-precision techniques of milk and sub-THz bands of materials for Microelectronics |
Project in Poland financed by DG Regio |
Statements
1,753,670.0 zloty
0 references
1,753,670.0 zloty
0 references
100.0 percent
0 references
1 November 2016
0 references
30 April 2020
0 references
POLITECHNIKA WARSZAWSKA
0 references
The main objective of this project will be to develop novel sensors and sensing methodologies useful to non-destructive contactless electric and magnetic characterization of materials at millimeter and sub-THz spectra. The implementation of this goal will be two-pronged. On one hand, the said resonant structures will be exploited to benefit from their inherent narrow-band properties, which are particularly useful at measuring low-loss materials. On the other hand, the research will also concern broadband measurement techniques based on multimode resonant structures. The auxiliary goal is adopting the technological approaches typical for the microelectronics industry and apply them for precise fabrication of novel resonant cavities operating in the millimeter and the sub-THz bands. Another such goal is development of a new low-loss yet high dielectric constant material for dielectric posts inserted into sensing cavities. (Polish)
0 references
The main objective of this project will be to develop novel sensors and sensing methodologies useful to non-destructive contactless electric and magnetic characterisation of materials at millimeter and sub-THz spectra. The implementation of this goal will be two-Pronged. On one hand, the said Resonant structures will be exploited to benefit from their inherent narrow-band properties, which are particularly useful at measuring low-loss materials. On the other hand, the research will also concern broadband measurement techniques based on multimode Resonant structures. The auxiliary goal is adopting the technological approaches typical for the Microelectronics industry and apply them for precise fabrication of novel Resonant cavities operating in the millimeter and the sub-THz bands. Another such goal is development of a new low-loss yet high dielectric constant material for dielectric posts inserted into sensing cavities. (English)
14 October 2020
0 references
Identifiers
POIR.04.04.00-00-1C4B/16
0 references