Artificial intelligence (AI) streamlining users’ conversion to paying customers (Q10117): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Removed claim: EU contribution (P835): 354,123.43200000003 euro)
(‎Changed an Item: Fixing rounding issue)
Property / EU contribution
 
354,123.43 Euro
Amount354,123.43 Euro
UnitEuro
Property / EU contribution: 354,123.43 Euro / rank
 
Preferred rank
Property / EU contribution: 354,123.43 Euro / qualifier
 
exchange rate to Euro: 0.04 Euro
Amount0.04 Euro
UnitEuro
Property / EU contribution: 354,123.43 Euro / qualifier
 
point in time: 10 January 2020
Timestamp+2020-01-10T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

Revision as of 06:59, 22 September 2020

Project in Czech Republic financed by DG Regio
Language Label Description Also known as
English
Artificial intelligence (AI) streamlining users’ conversion to paying customers
Project in Czech Republic financed by DG Regio

    Statements

    0 references
    8,853,085.8 Czech koruna
    0 references
    354,123.43 Euro
    10 January 2020
    0 references
    18,642,000.0 Czech koruna
    0 references
    745,680.0 Euro
    10 January 2020
    0 references
    47.49 percent
    0 references
    1 January 2016
    0 references
    29 September 2019
    0 references
    Webnode CZ s.r.o.
    0 references
    0 references

    49°11'25.62"N, 16°35'15.97"E
    0 references
    60300
    0 references
    Cílem projektu je výzkum a vývoj technologie pro zvyšování efektivity investic do získávání zákazníků, která bude vycházet z nejnovějších poznatků vědy a výzkumu v oblasti optimalizace genetickými algoritmy v kombinaci se strojovým učením pomocí hlubokých neuronových sítí (deep learning). Výsledkem projektu bude systém, který v době dlouho před konverzí uživatele na platícího zákazníka bude schopen predikovat pravděpodobnost, s jakou se časem stane platícím zákazníkem. a. (Czech)
    0 references
    The project aims at research and development of technology to improve the efficiency of investment in customer acquisition, based on the most recent knowledge of science and research in optimising genetic algorithms in combination with physical learning using deep neurolearning networks. The project will result in a system that, over a long period of time before the customer switching to the customer, will be able to predict the likelihood of the time it takes to pay a client. a. (English)
    0 references

    Identifiers

    CZ.01.1.02/0.0/0.0/15_018/0004788
    0 references