Q80222 (Q80222): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Created a new Item)
 
(‎Changed an Item)
Property / financed by
 
Property / financed by: European Union / rank
 
Normal rank
Property / intervention field
 
Property / intervention field: Research and innovation processes in SMEs (including voucher schemes, process, design, service and social innovation) / rank
 
Normal rank

Revision as of 10:03, 31 January 2020

Project in Poland financed by DG Regio
Language Label Description Also known as
English
No label defined
Project in Poland financed by DG Regio

    Statements

    0 references
    8,682,391.89 zloty
    0 references
    2,083,774.0536 Euro
    13 January 2020
    0 references
    12,402,373.75 zloty
    0 references
    2,976,569.6999999997 Euro
    13 January 2020
    0 references
    70.01 percent
    0 references
    1 February 2019
    0 references
    31 January 2022
    0 references
    ENPROM SPÓŁKA Z OGRANICZONA ODPOWIEDZIALNOŚCIĄ
    0 references
    Projekt polega na stworzeniu systemu służącego do monitorowania prac modernizacyjnych na istniejącej infrastrukturze krytycznej w zakresie sieci elektroenergetycznych. Raportowanie będzie oparte na danych zbieranych z nalotów dronami. Dokładność zbieranych danych będzie dopuszczalna na poziomie ok. 1 centymetra dla większych elementów, takich jak fundamenty, przewody, haki. Samo zasilanie danych przez drony będzie realizowane za pomocą fotogrametrii i/lub przy użyciu skanera laserowego (obejmuje multiskanowanie). W wyniku prac badawczych zostanie opracowany system automatycznego pozycjonowania się i robienia zdjęć przez drony. Zebrane dane będą poddawane obróbce cyfrowej i analitycznej z wykorzystaniem algorytmów sztucznej inteligencji i uczenia maszynowego (ang.: machine learning, ML), takich jak np. systemy regułowe i sieci neuronowe ze splotem (ang.: convolutional neural networks, CNN). Rozwiąznie umożliwi zwiększenie niezawodności (bezpieczniejsza i mniej awaryjna praca systemu elektroenergetycznego), przewidywanie na bazie analizy wpływu rozwiązań projektowych na ich żywotność (badanie starzenia się poszczególnych elementów linii), a także szybsze usuwanie awarii (gromadzenie danych jakościowych na temat istniejących linii) Przetwarzane dane pozwolą oszacować pracochłonność oraz postęp prac, w tym identyfikację poszczególnych obiektów. Algorytm wykorzysta mechanizmy reguły uczenia się sieci, co przełoży się na klasyfikację identyfikowanych obiektów różniących się między sobą w zdefiniowanym zakresie odchyłu od obiektu wzorcowego. Przeznaczenie_pomocy_publicznej: art. 25 rozporządzenia KE nr 651/2014 z dnia 17 czerwca 2014 r. uznające niektóre rodzaje pomocy za zgodne z rynkiem wewnętrznym w stosowaniu art. 107 i 108 Traktatu (Dz. Urz. UE L 187/1 z 26.06.2014). (Polish)
    0 references

    Identifiers

    POIR.01.02.00-00-0307/17
    0 references