High-tech laboratory complex for comparative neurobiological, physiological and behavioural changes (Q3958269): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed an Item: add summary)
(‎Changed an Item: Adding English translations)
Property / summary
 
A) Through the planned infrastructural developments, coordinated examinations of the following main research topics can be carried out in the laboratories of the two participating departments with the participation of the main partners of the project. 1.Complex examination of brain synchronisation and behavioural effects (Responsible researcher: László Détári, Sándor Borbély) can be selectively manipulated by optogenetic methods to selectively manipulate basal pre-agyi (BF) cholinergic and GABAerg cells and the suprakiazmatic nucleus (SCN) groups of the main circadian regulator of the homeostatic and neural control of sleep. The firing frequency of SCN cells has a fundamental influence on circadian functions. Optogenetic inhibition of cells of varying duration would provide novel knowledge of in vivo coordination of sleep control factors. Qualitatively and quantitatively different levels of synchronisation resulting from selective manipulation of BF and SCN cells can control current behaviour by affecting the individual’s responsiveness. In addition, talamus plays an important role in regulating sleep-waking processes. The thalamocortical system is also capable of producing a high level of synchronised activity, which can result in the appearance of epileptic seizures. In our experiments, using an in vivo model of these seizures, we use optogenetic methods to study the effect of various inputs or the activation of local interneurons on epileptic activity in transgenic mouse strains. 2.Neurobiological testing of social behaviors in correlation with synchronisation (Responsible researcher: Dobolyi Árpád) The underlying mechanisms of social behavior are defined in rodent models, during the care of offspring and during the interaction of adult animals. During maternal-pups interactions (e.g. nest building, breastfeeding) and adult interactions (e.g. attack, toy, sexual contact), we will study field potentials and neuronal activity. In addition, we use a zebrapinty model to test offspring care because we can test physiological differences without lactation. In our experiments, we characterise neuronal networks functionally correlated with synchronisation activities that are involved in the regulation of social interactions. Our central hypothesis is that neurons in affected brain areas will be altered during offspring care and other social interactions that can be detected by electrophysiological techniques to be procured and controlled by optogenetics. Specifically, we plan to study thalamic transfer cores, parts of hypothalamus, such as the preoptic area, amygdala, and cerebral cortex. This characterisation of these neuronal networks responsible for these social behaviours makes it possible to carry out further neurogenetic work and to investigate pathological changes in social behaviour. The examination of genetically modified transgenic mouse strains (Amylin, TIP39 and parathormone 2 receptor deficiency animals) that did not perform progeny or social interactions in the past, will lead to an understanding of pathological processes. 3.Ex vivo examination of cortical synchronisation mechanisms (Responsible researcher: Secular Ildikó, Petra Varró) We plan to study at single cell and network levels the factors affecting the susceptibility to synchronous activity with parallel patch clamping and field potential drainage using microectrophysiological procedures, surviving cerebral cortex, amigdaloid, and combined slices. We would study samples from various individuals with normal and pathological conditions (motherhood, disturbed sleep rhythm, psychiatric diseases). The use of rat and mouse strains expressing photosensitive ion channels in glutamatergic neurons of the cerebral cortex provides a new opportunity for cellular knowledge of the cortical mechanisms of synchronised activity. In parallel with the measurements presented in the previous points, our aim is to examine the role of caic acid, certain cholinergic type and peptide receptors controlled processes. It is assumed that intervention on these routes could lead to the development of targeted therapeutic options with fewer adverse reactions. 4.Mapping the synchronous connection of brain areas with simultaneous resting/default state fMRI and EEG tests on dogs (Responsible Researcher: Dr. Nóra Bunford) One of the objectives of the study is to map the resting brain condition of adult dogs and the functional networks of this condition. We examine how these networks change as a result of different treatments and natural physiological effects. The results of simultaneous fMRI and continuous EEG measurements provide reliable data that the dog is in a vigilant, dormant or sleepy state in the scanner during the measurement and allows the isolation of different sleep phases. Like the man, the depth of the dog’s sleep affects the integrity of the resting brain network. Further research during the various vigilance/sleeping stages m (English)
Property / summary: A) Through the planned infrastructural developments, coordinated examinations of the following main research topics can be carried out in the laboratories of the two participating departments with the participation of the main partners of the project. 1.Complex examination of brain synchronisation and behavioural effects (Responsible researcher: László Détári, Sándor Borbély) can be selectively manipulated by optogenetic methods to selectively manipulate basal pre-agyi (BF) cholinergic and GABAerg cells and the suprakiazmatic nucleus (SCN) groups of the main circadian regulator of the homeostatic and neural control of sleep. The firing frequency of SCN cells has a fundamental influence on circadian functions. Optogenetic inhibition of cells of varying duration would provide novel knowledge of in vivo coordination of sleep control factors. Qualitatively and quantitatively different levels of synchronisation resulting from selective manipulation of BF and SCN cells can control current behaviour by affecting the individual’s responsiveness. In addition, talamus plays an important role in regulating sleep-waking processes. The thalamocortical system is also capable of producing a high level of synchronised activity, which can result in the appearance of epileptic seizures. In our experiments, using an in vivo model of these seizures, we use optogenetic methods to study the effect of various inputs or the activation of local interneurons on epileptic activity in transgenic mouse strains. 2.Neurobiological testing of social behaviors in correlation with synchronisation (Responsible researcher: Dobolyi Árpád) The underlying mechanisms of social behavior are defined in rodent models, during the care of offspring and during the interaction of adult animals. During maternal-pups interactions (e.g. nest building, breastfeeding) and adult interactions (e.g. attack, toy, sexual contact), we will study field potentials and neuronal activity. In addition, we use a zebrapinty model to test offspring care because we can test physiological differences without lactation. In our experiments, we characterise neuronal networks functionally correlated with synchronisation activities that are involved in the regulation of social interactions. Our central hypothesis is that neurons in affected brain areas will be altered during offspring care and other social interactions that can be detected by electrophysiological techniques to be procured and controlled by optogenetics. Specifically, we plan to study thalamic transfer cores, parts of hypothalamus, such as the preoptic area, amygdala, and cerebral cortex. This characterisation of these neuronal networks responsible for these social behaviours makes it possible to carry out further neurogenetic work and to investigate pathological changes in social behaviour. The examination of genetically modified transgenic mouse strains (Amylin, TIP39 and parathormone 2 receptor deficiency animals) that did not perform progeny or social interactions in the past, will lead to an understanding of pathological processes. 3.Ex vivo examination of cortical synchronisation mechanisms (Responsible researcher: Secular Ildikó, Petra Varró) We plan to study at single cell and network levels the factors affecting the susceptibility to synchronous activity with parallel patch clamping and field potential drainage using microectrophysiological procedures, surviving cerebral cortex, amigdaloid, and combined slices. We would study samples from various individuals with normal and pathological conditions (motherhood, disturbed sleep rhythm, psychiatric diseases). The use of rat and mouse strains expressing photosensitive ion channels in glutamatergic neurons of the cerebral cortex provides a new opportunity for cellular knowledge of the cortical mechanisms of synchronised activity. In parallel with the measurements presented in the previous points, our aim is to examine the role of caic acid, certain cholinergic type and peptide receptors controlled processes. It is assumed that intervention on these routes could lead to the development of targeted therapeutic options with fewer adverse reactions. 4.Mapping the synchronous connection of brain areas with simultaneous resting/default state fMRI and EEG tests on dogs (Responsible Researcher: Dr. Nóra Bunford) One of the objectives of the study is to map the resting brain condition of adult dogs and the functional networks of this condition. We examine how these networks change as a result of different treatments and natural physiological effects. The results of simultaneous fMRI and continuous EEG measurements provide reliable data that the dog is in a vigilant, dormant or sleepy state in the scanner during the measurement and allows the isolation of different sleep phases. Like the man, the depth of the dog’s sleep affects the integrity of the resting brain network. Further research during the various vigilance/sleeping stages m (English) / rank
 
Normal rank
Property / summary: A) Through the planned infrastructural developments, coordinated examinations of the following main research topics can be carried out in the laboratories of the two participating departments with the participation of the main partners of the project. 1.Complex examination of brain synchronisation and behavioural effects (Responsible researcher: László Détári, Sándor Borbély) can be selectively manipulated by optogenetic methods to selectively manipulate basal pre-agyi (BF) cholinergic and GABAerg cells and the suprakiazmatic nucleus (SCN) groups of the main circadian regulator of the homeostatic and neural control of sleep. The firing frequency of SCN cells has a fundamental influence on circadian functions. Optogenetic inhibition of cells of varying duration would provide novel knowledge of in vivo coordination of sleep control factors. Qualitatively and quantitatively different levels of synchronisation resulting from selective manipulation of BF and SCN cells can control current behaviour by affecting the individual’s responsiveness. In addition, talamus plays an important role in regulating sleep-waking processes. The thalamocortical system is also capable of producing a high level of synchronised activity, which can result in the appearance of epileptic seizures. In our experiments, using an in vivo model of these seizures, we use optogenetic methods to study the effect of various inputs or the activation of local interneurons on epileptic activity in transgenic mouse strains. 2.Neurobiological testing of social behaviors in correlation with synchronisation (Responsible researcher: Dobolyi Árpád) The underlying mechanisms of social behavior are defined in rodent models, during the care of offspring and during the interaction of adult animals. During maternal-pups interactions (e.g. nest building, breastfeeding) and adult interactions (e.g. attack, toy, sexual contact), we will study field potentials and neuronal activity. In addition, we use a zebrapinty model to test offspring care because we can test physiological differences without lactation. In our experiments, we characterise neuronal networks functionally correlated with synchronisation activities that are involved in the regulation of social interactions. Our central hypothesis is that neurons in affected brain areas will be altered during offspring care and other social interactions that can be detected by electrophysiological techniques to be procured and controlled by optogenetics. Specifically, we plan to study thalamic transfer cores, parts of hypothalamus, such as the preoptic area, amygdala, and cerebral cortex. This characterisation of these neuronal networks responsible for these social behaviours makes it possible to carry out further neurogenetic work and to investigate pathological changes in social behaviour. The examination of genetically modified transgenic mouse strains (Amylin, TIP39 and parathormone 2 receptor deficiency animals) that did not perform progeny or social interactions in the past, will lead to an understanding of pathological processes. 3.Ex vivo examination of cortical synchronisation mechanisms (Responsible researcher: Secular Ildikó, Petra Varró) We plan to study at single cell and network levels the factors affecting the susceptibility to synchronous activity with parallel patch clamping and field potential drainage using microectrophysiological procedures, surviving cerebral cortex, amigdaloid, and combined slices. We would study samples from various individuals with normal and pathological conditions (motherhood, disturbed sleep rhythm, psychiatric diseases). The use of rat and mouse strains expressing photosensitive ion channels in glutamatergic neurons of the cerebral cortex provides a new opportunity for cellular knowledge of the cortical mechanisms of synchronised activity. In parallel with the measurements presented in the previous points, our aim is to examine the role of caic acid, certain cholinergic type and peptide receptors controlled processes. It is assumed that intervention on these routes could lead to the development of targeted therapeutic options with fewer adverse reactions. 4.Mapping the synchronous connection of brain areas with simultaneous resting/default state fMRI and EEG tests on dogs (Responsible Researcher: Dr. Nóra Bunford) One of the objectives of the study is to map the resting brain condition of adult dogs and the functional networks of this condition. We examine how these networks change as a result of different treatments and natural physiological effects. The results of simultaneous fMRI and continuous EEG measurements provide reliable data that the dog is in a vigilant, dormant or sleepy state in the scanner during the measurement and allows the isolation of different sleep phases. Like the man, the depth of the dog’s sleep affects the integrity of the resting brain network. Further research during the various vigilance/sleeping stages m (English) / qualifier
 
point in time: 9 February 2022
Timestamp+2022-02-09T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

Revision as of 18:46, 9 February 2022

Project Q3958269 in Hungary
Language Label Description Also known as
English
High-tech laboratory complex for comparative neurobiological, physiological and behavioural changes
Project Q3958269 in Hungary

    Statements

    0 references
    106,128,131 forint
    0 references
    293,466.57 Euro
    0.00276521 Euro
    6 December 2021
    0 references
    386,819.434 Euro
    0.0027336256 Euro
    15 December 2021
    0 references
    141,504,174.667 forint
    0 references
    74.999993 percent
    0 references
    18 April 2018
    0 references
    31 December 2020
    0 references
    EÖTVÖS LORÁND TUDOMÁNYEGYETEM
    0 references
    0 references

    47°29'30.62"N, 18°58'44.15"E
    0 references
    A) A tervezett infrastrukturális fejlesztések révén a következő főbb kutatási témák összehangolt vizsgálatai valósíthatók meg a résztvevő két tanszék laboratóriumaiban a projekt főbb partnereinek részvételével. 1.Agyi szinkronizáció és viselkedéses hatásainak komplex vizsgálata (Felelős kutató: Détári László, Borbély Sándor) Optogenetikai módszerekkel szelektíven manipulálhatók az alvás homeosztatikus és idegi szabályozásában kulcsfontosságú bazális előagyi (BF) kolinerg és GABAerg sejtek és a fő cirkadián szabályozó szuprakiazmatikus mag (SCN) peptiderg sejtcsoportjai. Az SCN sejtjeinek tüzelési frekvenciája alapvetően befolyásolja a cirkadián funkciókat. A sejtek változó időtartamú optogenetikai gátlása újszerű ismereteket nyújtana az alvásszabályozás tényezőinek in vivo koordinációjáról. A BF és az SCN sejtjeinek szelektív manipulációjakor kialakuló minőségileg és mennyiségileg eltérő szinkronizációs szintek az egyed válaszkészségét befolyásolva az aktuális viselkedését szabályozhatják. E mellett a talamusz is fontos szerepet játszik az alvás-ébrenléti folyamatok szabályozásában. A talamokortikális rendszer képes nagyfokú szinkronizált aktivitás kialakítására is, ami epileptikus rohamok megjelenését eredményezheti. Kísérleteinkben e rohamok valamely in vivo modelljét alkalmazva transzgén egértörzsekben optogenetikai módszerekkel tervezzük tanulmányozni a különböző bemenetek, vagy a lokális interneuronok aktiválásának hatását az epileptikus tevékenységre. 2.Szociális viselkedések neurobiológiai vizsgálata szinkronizációval korrelációban (Felelős kutató: Dobolyi Árpád) A szociális viselkedések agyi háttérmechanizmusait rágcsáló modellekben, utódgondozás során, illetve felnőtt állatok interakciója alatt határozzuk meg. Anya-kölykök interakciók (pl. fészeképítés, szoptatás), és felnőtt egyedek interakciói (pl. támadás, játék, szexuális kontaktus) során tanulmányozzuk majd a mezőpotenciálokat és a neuronális aktivitást. Emellett zebrapinty modellt is használunk az utódgondozás vizsgálatára, mert ott laktációtól mentesen tudjuk az élettani eltéréseket vizsgálni. Kísérleteinkben olyan neuronális hálózatokat jellemzünk funkcionálisan, szinkronizációs aktivitásokkal korrelációban, melyek részt vesznek a szociális interakciók szabályozásában. Központi hipotézisünk, hogy az érintett agyterületek neuronjai megváltozott állapotba kerülnek az utódgondozás és egyéb szociális interakciók során, amit a beszerzendő elektrofiziológiai technikákkal detektálni, optogenetikával pedig irányítani tudunk. Specifikusan a thalamikus átkapcsoló magokat, a hypothalamus egyes részeit, így a preoptikus területet, az amygdalát, és a nagyagykérget tervezzük tanulmányozni. Ezen szociális viselkedésekért felelős neuronális hálózatok ily módon való jellemzése lehetővé teszi további neurogenetikai munkák elvégzését és a szociális viselkedés patológiai változásinak vizsgálatát. Korábban általunk beszerzett, utódgondozást, illetve szociális interakciókat nem megfelelően végző, genetikailag módosított, transzgén egértörzsek vizsgálata (amylin, TIP39 és parathormon 2 receptor deficiens állatok) a kóros folyamatok megértéséhez vezet majd el. 3.Agykérgi szinkronizációs mechanizmusok ex vivo vizsgálata (Felelős kutató: Világi Ildikó, Varró Petra) Mikrolektrofiziológiai eljárások alkalmazásával, túlélő agykérgi, amigdaloid, és kombinált szeleteken tervezzük egysejt- és hálózati szinteken tanulmányozni a szinkron aktivitásra való hajlamot befolyásoló tényezőket párhuzamos patch clamp- és mezőpotenciál elvezetésekkel. Különböző normál és kóros állapotú (anyaság, zavart alvási ritmus, pszichiátriai betegségek) egyedekből származó mintákat tanulmányoznánk. Az agykéreg glutamaterg neuronjaikban fényérzékeny ioncsatornát kifejező patkány- és egértörzs alkalmazása új lehetőséget biztosít a szinkronizált aktivitás kérgi mechanizmusainak sejtszintű megismerésére. Párhuzamban az előző pontokban bemutatott mérésekkel, célunk a kainsav-, egyes kolinerg típusú és peptidreceptorok által kontrollált folyamatok szerepének vizsgálata. Feltételezésünk szerint ezen útvonalakon beavatkozva kevesebb mellékhatással rendelkező, célzott terápiás lehetőségek alakíthatók ki. 4.Az agyterületek szinkron kapcsolódásának feltérképezése szimultán resting/default state fMRI és EEG vizsgálatokkal kutyán (Felelős kutató: Dr. Bunford Nóra) A vizsgálat egyik célja felnőtt kutyák nyugalmi agyi állapotának, illetve ezen állapot funkcionális hálózatainak feltérképezése. Vizsgáljuk, hogy e hálózatok különböző kezelések és természetes élettani hatások következtében miképp változnak. A szimultán fMRI és folyamatos EEG mérés eredményei megbízható adatokat szolgáltatnak arról, hogy a kutya éber, szendergő vagy alvó állapotban fekszik a szkennerben a mérés alatt, és lehetővé teszik a különböző alvásfázisok elkülönítését. Az emberéhez hasonlóan a kutya alvásának mélysége is befolyásolja a nyugalmi agyi hálózat integritását. További kutatásban a különböző éberségi/alvási szakaszok alatt m (Hungarian)
    0 references
    A) Through the planned infrastructural developments, coordinated examinations of the following main research topics can be carried out in the laboratories of the two participating departments with the participation of the main partners of the project. 1.Complex examination of brain synchronisation and behavioural effects (Responsible researcher: László Détári, Sándor Borbély) can be selectively manipulated by optogenetic methods to selectively manipulate basal pre-agyi (BF) cholinergic and GABAerg cells and the suprakiazmatic nucleus (SCN) groups of the main circadian regulator of the homeostatic and neural control of sleep. The firing frequency of SCN cells has a fundamental influence on circadian functions. Optogenetic inhibition of cells of varying duration would provide novel knowledge of in vivo coordination of sleep control factors. Qualitatively and quantitatively different levels of synchronisation resulting from selective manipulation of BF and SCN cells can control current behaviour by affecting the individual’s responsiveness. In addition, talamus plays an important role in regulating sleep-waking processes. The thalamocortical system is also capable of producing a high level of synchronised activity, which can result in the appearance of epileptic seizures. In our experiments, using an in vivo model of these seizures, we use optogenetic methods to study the effect of various inputs or the activation of local interneurons on epileptic activity in transgenic mouse strains. 2.Neurobiological testing of social behaviors in correlation with synchronisation (Responsible researcher: Dobolyi Árpád) The underlying mechanisms of social behavior are defined in rodent models, during the care of offspring and during the interaction of adult animals. During maternal-pups interactions (e.g. nest building, breastfeeding) and adult interactions (e.g. attack, toy, sexual contact), we will study field potentials and neuronal activity. In addition, we use a zebrapinty model to test offspring care because we can test physiological differences without lactation. In our experiments, we characterise neuronal networks functionally correlated with synchronisation activities that are involved in the regulation of social interactions. Our central hypothesis is that neurons in affected brain areas will be altered during offspring care and other social interactions that can be detected by electrophysiological techniques to be procured and controlled by optogenetics. Specifically, we plan to study thalamic transfer cores, parts of hypothalamus, such as the preoptic area, amygdala, and cerebral cortex. This characterisation of these neuronal networks responsible for these social behaviours makes it possible to carry out further neurogenetic work and to investigate pathological changes in social behaviour. The examination of genetically modified transgenic mouse strains (Amylin, TIP39 and parathormone 2 receptor deficiency animals) that did not perform progeny or social interactions in the past, will lead to an understanding of pathological processes. 3.Ex vivo examination of cortical synchronisation mechanisms (Responsible researcher: Secular Ildikó, Petra Varró) We plan to study at single cell and network levels the factors affecting the susceptibility to synchronous activity with parallel patch clamping and field potential drainage using microectrophysiological procedures, surviving cerebral cortex, amigdaloid, and combined slices. We would study samples from various individuals with normal and pathological conditions (motherhood, disturbed sleep rhythm, psychiatric diseases). The use of rat and mouse strains expressing photosensitive ion channels in glutamatergic neurons of the cerebral cortex provides a new opportunity for cellular knowledge of the cortical mechanisms of synchronised activity. In parallel with the measurements presented in the previous points, our aim is to examine the role of caic acid, certain cholinergic type and peptide receptors controlled processes. It is assumed that intervention on these routes could lead to the development of targeted therapeutic options with fewer adverse reactions. 4.Mapping the synchronous connection of brain areas with simultaneous resting/default state fMRI and EEG tests on dogs (Responsible Researcher: Dr. Nóra Bunford) One of the objectives of the study is to map the resting brain condition of adult dogs and the functional networks of this condition. We examine how these networks change as a result of different treatments and natural physiological effects. The results of simultaneous fMRI and continuous EEG measurements provide reliable data that the dog is in a vigilant, dormant or sleepy state in the scanner during the measurement and allows the isolation of different sleep phases. Like the man, the depth of the dog’s sleep affects the integrity of the resting brain network. Further research during the various vigilance/sleeping stages m (English)
    9 February 2022
    0 references
    Budapest, Budapest
    0 references

    Identifiers

    VEKOP-2.3.3-15-2017-00019
    0 references