Development of terrahertze infrastructure with extreme field strength (Q3923203): Difference between revisions
Jump to navigation
Jump to search
(Changed an Item: add summary) |
(Changed an Item: Adding English translations) |
||||||||||||||
Property / summary | |||||||||||||||
A. The main objective of the project is to further develop the extreme field strength terahertz infrastructure in order to produce THz pulses with a peak field strength of 10 MV/cm with the upper end of the frequency range reaching 3 THz (instead of the current 1 THz). In order to achieve the objective, the planned investments must be made and the research tasks necessary for the use of the infrastructure being carried out must be carried out. The two activities can be carried out in parallel, but the resources of the aid are used only for the purchase of the necessary equipment. The secondary objective of the project is to develop an acceleration technique that can produce electron packs of 1 MeV energy using THz pulses with a field strength of 10 MV/cm with an accelerator of at least one accelerator shorter than normal microwave accelerators. 1. Activities needed to expand the infrastructure — Preparation, tendering, evaluation of the necessary procurement procedures, conclusion of supply contracts 6 months after the conclusion of the contract Documentation: Contract of supply concluded for the following items: 1. High-Pulse Energy Pumping Laser; 2. Optical parametric amplifier; 3. Electron cannon; 4. Semiconductor contact grids; 5. TDTS equipment (at the expense of own resources) — installation of TDTS equipment, electron cannon, supply of semiconductor contact grids. Deadline: 12 months after the conclusion of the contract. Documentation: Installation reports — Installation of an optical parametric amplifier. Deadline: 20 months after the conclusion of the contract. Documentation: Commissioning report — Installation of high-pulse-energy pump laser Deadline: 20 months after the conclusion of the contract. Documentation: Entry into service report 2. Development-related research tasks The THz resource development tasks Before procurement: 1 To further develop the THz source based on semiconductor contact grid developed recently, they will continue computer simulations aimed at maximising the efficiency of the THz source and the magnitude of the available field strength. 2 With the contact grid parameters obtained as a result of the simulations, we will design the contact grids to be manufactured. During and after procurement: 1 Focusing system is designed to optimally focus the impulses of high-energy THz sources. 2 With the purchased laser, optical parametric amplifier and semiconductor contact grid, we build the extreme high energy and high bandwidth THz pulse source. 3 The new pulse source is integrated into our THz pump — test measuring system. 4 Linear and nonlinear THz spectroscopy with our improved measuring equipment. We involve our cooperating partners within and outside the PTE. The tasks related to the THz electron accelerator 1 design and build an electron accelerator based on focused THz pulse pairs. (Current microwave particle accelerators are complex-infrastructured equipment, and their construction and operation cost enormously. Looking for simpler, more cost-effective solutions in recent decades, laser pulses have been designed based on acceleration in dielectric structures, which can be alternatives to 100 m long conventional particle accelerators. However, the short wavelength or periodide of the initially proposed visible or near-infrared laser pulses makes it impossible to effectively accelerate particle packs with significant charges. Using THz pulses with wavelengths greater than visible, both the interaction length and the total filling of particles can be significantly increased.) 2 Based on preliminary calculations, effective acceleration can be achieved, resulting in electrons’ energy reaching 100 keV. Such energy electrons can be widely used in material testing, medicine and industry. For the experimental implementation, we plan to write numerical models with which several parameters (e.g. the wavelength and focus of the THz pulse) will be optimised in order to achieve the maximum electron energy. The optimised layout will also be tested with commertial finite element analysis software. We plan to optimise the numerical models and parameters by the end of 2017 and the first test experiment by the end of 2018. 3 we design and build a dielectric electron after-accelerator powered by THz pulses. The layout is based on the fact that a pair of THz pulses with high (~mJ) energy creates a periodically variable electromagnetic field between a dielectric grid pair, ensuring that relativistic electrons passing through the grid pair always perceive the electric space of the accelerator pulse as they move. According to preliminary calculations, more than 10 MeV/m— (English) | |||||||||||||||
Property / summary: A. The main objective of the project is to further develop the extreme field strength terahertz infrastructure in order to produce THz pulses with a peak field strength of 10 MV/cm with the upper end of the frequency range reaching 3 THz (instead of the current 1 THz). In order to achieve the objective, the planned investments must be made and the research tasks necessary for the use of the infrastructure being carried out must be carried out. The two activities can be carried out in parallel, but the resources of the aid are used only for the purchase of the necessary equipment. The secondary objective of the project is to develop an acceleration technique that can produce electron packs of 1 MeV energy using THz pulses with a field strength of 10 MV/cm with an accelerator of at least one accelerator shorter than normal microwave accelerators. 1. Activities needed to expand the infrastructure — Preparation, tendering, evaluation of the necessary procurement procedures, conclusion of supply contracts 6 months after the conclusion of the contract Documentation: Contract of supply concluded for the following items: 1. High-Pulse Energy Pumping Laser; 2. Optical parametric amplifier; 3. Electron cannon; 4. Semiconductor contact grids; 5. TDTS equipment (at the expense of own resources) — installation of TDTS equipment, electron cannon, supply of semiconductor contact grids. Deadline: 12 months after the conclusion of the contract. Documentation: Installation reports — Installation of an optical parametric amplifier. Deadline: 20 months after the conclusion of the contract. Documentation: Commissioning report — Installation of high-pulse-energy pump laser Deadline: 20 months after the conclusion of the contract. Documentation: Entry into service report 2. Development-related research tasks The THz resource development tasks Before procurement: 1 To further develop the THz source based on semiconductor contact grid developed recently, they will continue computer simulations aimed at maximising the efficiency of the THz source and the magnitude of the available field strength. 2 With the contact grid parameters obtained as a result of the simulations, we will design the contact grids to be manufactured. During and after procurement: 1 Focusing system is designed to optimally focus the impulses of high-energy THz sources. 2 With the purchased laser, optical parametric amplifier and semiconductor contact grid, we build the extreme high energy and high bandwidth THz pulse source. 3 The new pulse source is integrated into our THz pump — test measuring system. 4 Linear and nonlinear THz spectroscopy with our improved measuring equipment. We involve our cooperating partners within and outside the PTE. The tasks related to the THz electron accelerator 1 design and build an electron accelerator based on focused THz pulse pairs. (Current microwave particle accelerators are complex-infrastructured equipment, and their construction and operation cost enormously. Looking for simpler, more cost-effective solutions in recent decades, laser pulses have been designed based on acceleration in dielectric structures, which can be alternatives to 100 m long conventional particle accelerators. However, the short wavelength or periodide of the initially proposed visible or near-infrared laser pulses makes it impossible to effectively accelerate particle packs with significant charges. Using THz pulses with wavelengths greater than visible, both the interaction length and the total filling of particles can be significantly increased.) 2 Based on preliminary calculations, effective acceleration can be achieved, resulting in electrons’ energy reaching 100 keV. Such energy electrons can be widely used in material testing, medicine and industry. For the experimental implementation, we plan to write numerical models with which several parameters (e.g. the wavelength and focus of the THz pulse) will be optimised in order to achieve the maximum electron energy. The optimised layout will also be tested with commertial finite element analysis software. We plan to optimise the numerical models and parameters by the end of 2017 and the first test experiment by the end of 2018. 3 we design and build a dielectric electron after-accelerator powered by THz pulses. The layout is based on the fact that a pair of THz pulses with high (~mJ) energy creates a periodically variable electromagnetic field between a dielectric grid pair, ensuring that relativistic electrons passing through the grid pair always perceive the electric space of the accelerator pulse as they move. According to preliminary calculations, more than 10 MeV/m— (English) / rank | |||||||||||||||
Normal rank | |||||||||||||||
Property / summary: A. The main objective of the project is to further develop the extreme field strength terahertz infrastructure in order to produce THz pulses with a peak field strength of 10 MV/cm with the upper end of the frequency range reaching 3 THz (instead of the current 1 THz). In order to achieve the objective, the planned investments must be made and the research tasks necessary for the use of the infrastructure being carried out must be carried out. The two activities can be carried out in parallel, but the resources of the aid are used only for the purchase of the necessary equipment. The secondary objective of the project is to develop an acceleration technique that can produce electron packs of 1 MeV energy using THz pulses with a field strength of 10 MV/cm with an accelerator of at least one accelerator shorter than normal microwave accelerators. 1. Activities needed to expand the infrastructure — Preparation, tendering, evaluation of the necessary procurement procedures, conclusion of supply contracts 6 months after the conclusion of the contract Documentation: Contract of supply concluded for the following items: 1. High-Pulse Energy Pumping Laser; 2. Optical parametric amplifier; 3. Electron cannon; 4. Semiconductor contact grids; 5. TDTS equipment (at the expense of own resources) — installation of TDTS equipment, electron cannon, supply of semiconductor contact grids. Deadline: 12 months after the conclusion of the contract. Documentation: Installation reports — Installation of an optical parametric amplifier. Deadline: 20 months after the conclusion of the contract. Documentation: Commissioning report — Installation of high-pulse-energy pump laser Deadline: 20 months after the conclusion of the contract. Documentation: Entry into service report 2. Development-related research tasks The THz resource development tasks Before procurement: 1 To further develop the THz source based on semiconductor contact grid developed recently, they will continue computer simulations aimed at maximising the efficiency of the THz source and the magnitude of the available field strength. 2 With the contact grid parameters obtained as a result of the simulations, we will design the contact grids to be manufactured. During and after procurement: 1 Focusing system is designed to optimally focus the impulses of high-energy THz sources. 2 With the purchased laser, optical parametric amplifier and semiconductor contact grid, we build the extreme high energy and high bandwidth THz pulse source. 3 The new pulse source is integrated into our THz pump — test measuring system. 4 Linear and nonlinear THz spectroscopy with our improved measuring equipment. We involve our cooperating partners within and outside the PTE. The tasks related to the THz electron accelerator 1 design and build an electron accelerator based on focused THz pulse pairs. (Current microwave particle accelerators are complex-infrastructured equipment, and their construction and operation cost enormously. Looking for simpler, more cost-effective solutions in recent decades, laser pulses have been designed based on acceleration in dielectric structures, which can be alternatives to 100 m long conventional particle accelerators. However, the short wavelength or periodide of the initially proposed visible or near-infrared laser pulses makes it impossible to effectively accelerate particle packs with significant charges. Using THz pulses with wavelengths greater than visible, both the interaction length and the total filling of particles can be significantly increased.) 2 Based on preliminary calculations, effective acceleration can be achieved, resulting in electrons’ energy reaching 100 keV. Such energy electrons can be widely used in material testing, medicine and industry. For the experimental implementation, we plan to write numerical models with which several parameters (e.g. the wavelength and focus of the THz pulse) will be optimised in order to achieve the maximum electron energy. The optimised layout will also be tested with commertial finite element analysis software. We plan to optimise the numerical models and parameters by the end of 2017 and the first test experiment by the end of 2018. 3 we design and build a dielectric electron after-accelerator powered by THz pulses. The layout is based on the fact that a pair of THz pulses with high (~mJ) energy creates a periodically variable electromagnetic field between a dielectric grid pair, ensuring that relativistic electrons passing through the grid pair always perceive the electric space of the accelerator pulse as they move. According to preliminary calculations, more than 10 MeV/m— (English) / qualifier | |||||||||||||||
point in time: 8 February 2022
|
Revision as of 17:46, 8 February 2022
Project Q3923203 in Hungary
Language | Label | Description | Also known as |
---|---|---|---|
English | Development of terrahertze infrastructure with extreme field strength |
Project Q3923203 in Hungary |
Statements
518,057,039 forint
0 references
1,416,173.984 Euro
0.0027336256 Euro
15 December 2021
0 references
518,057,039.0 forint
0 references
100.0 percent
0 references
1 January 2017
0 references
29 July 2021
0 references
PÉCSI TUDOMÁNYEGYETEM
0 references
A. A megvalósítani kívánt feladatok A projekt elsődleges célja az extrém térerősségű terahertzes infrastruktúra továbbfejlesztése annak érdekében, hogy az elő tudjon állítani 10 MV/cm csúcs térerősséggel rendelkező THz-es impulzusokat, amelyek frekvenciatartományának felső határa eléri a 3 THz értéket (a jelenlegi 1 THz helyett). A cél elérése érdekében meg kell valósítani a tervezett beruházásokat, illetve teljesíteni kell olyan kutatási feladatokat, amelyek a megvalósuló infrastruktúra használatához szükségesek. A két tevékenység párhuzamosan végezhető, a támogatás forrásait azonban csak a szükséges berendezések beszerzése érdekében használjuk. A projekt másodlagos célja olyan gyorsítási technika kidolgozása, amely a 10 MV/cm térerősségű THz-es impulzusok alkalmazásával képes 1 MeV energiájú elektroncsomagok előállítására a szokásos mikrohullámú gyorsítóknál legalább egy nagyságenddel rövidebb gyorsítóval. 1. Az infrastruktúra bővítéséhez szükséges aktivitások - A szükséges közbeszerzési eljárások előkészítése, kiírása, kiértékelése, szállítói szerződések megkötése Határidő: Szerződéskötést követő 6. hónap Dokumentáció: Megkötött szállítói szerződés a következő tételekre: 1. Nagy impulzusenergiájú pumpáló lézer; 2. Optikai parametrikus erősítő; 3. Elektron ágyú; 4. Félvezető kontaktrácsok; 5. TDTS berendezés (sajáterő terhére) - TDTS berendezés, elektron ágyú üzembe helyezése, félvezető kontaktrácsok szállítása. Határidő: Szerződéskötést követő 12. hónap. Dokumentáció: Üzembe helyezési jegyzőkönyvek - Optikai parametrikus erősítő üzembe helyezése. Határidő: Szerződéskötést követő 20. hónap. Dokumentáció: Üzembe helyezési jegyzőkönyv - Nagy impulzusenergiájú pumpáló lézer üzembe helyezése Határidő: Szerződéskötést követő 20. hónap. Dokumentáció: Üzembe helyezési jegyzőkönyv 2. A fejlesztéssel kapcsolatos kutatási feladatok A THz-es forrás fejlesztéssel kapcsolatos feladatok A beszerzések előtt: 1 A legutóbbi időben kidolgozott, félvezető kontakt rács alapú THz-es forrás továbbfejlesztése érdekében folytatni foglyuk azokat a számítógépes szimulációkat, amelyek célja a THz-es forrás hatásfokának, illetve az elérhető térerősség nagyságának a maximalizálása. 2 A szimulációk eredményeként kapott kontaktrács paraméterekkel meg fogjuk tervezni a legyártandó kontaktrácsokat. A beszerzések ideje alatt, illetve a beszerzések után: 1 Fókuszáló rendszert tervezzük a nagyenergiájú THz-es források impulzusainak az optimális fókuszálásához. 2 A beszerzett Lézer, optikai parametrikus erősítő és félvezető kontakt rácsokkal megépítjük az extrém nagy energiájú és nagy sávszélességű THz-es impulzusforrást. 3 Az új impulzusforrást integráljuk a THz-es pumpa – próba mérőrendszerünkbe. 4 Lineáris és nemlineáris THz-es spektroszkópiai vizsgálatokat végzünk a továbbfejlesztett mérőberendezéseinkkel. Ebbe bevonjuk a PTE-n belüli és azon kívüli együttműködő partnereinket. A THz-es elektrongyorsítóval kapcsolatos feladatok 1 Megtervezünk és megépítünk egy lefókuszált THz-es impulzuspárokon alapuló elektrongyorsítót. (A jelenleg működő mikrohullámú részecskegyorsítók összetett infrastruktúrájú berendezések, megépítésük és üzemeltetésük hatalmas költséggel jár. Egyszerűbb, költséghatékonyabb megoldásokat keresve az elmúlt évtizedekben lézerimpulzusokkal dielektrikum struktúrákban történő gyorsításon alapuló berendezések tervei születtek, amelyek alternatívái lehetnek a 100 méter hosszú hagyományos részecskegyorsítóknak. Az eredetileg javasolt látható-, vagy közeli infravörös lézerimpulzusok rövid hullámhossza, illetve periódusideje azonban lehetetlenné teszi jelentős töltéssel rendelkező részecskecsomagok hatékony gyorsítását. A láthatónál két nagyságrenddel nagyobb hullámhosszú THz-es impulzusokat alkalmazva mind a kölcsönhatási hossz, mind a részecskék össztöltése jelentősen növelhető.) 2 Az előzetes számítások alapján hatékony gyorsítás érhető el, mely következtében az elektronok energiája elérheti a 100 keV-os értéket. Ilyen energiájú elektronok széles körben alkalmazhatók az anyagvizsgálat, az orvostudomány és az ipar területén. A kísérleti megvalósításhoz numerikus modellek megírását tervezzük, melyekkel több paramétert (pl. a THz-es impulzus hullámhossza és fókuszának nagysága) fogunk optimalizálni a minél nagyobb elektron energia elérésének az érdekében. Az optimalizált elrendezést tesztelni fogjuk kommerciális végeselem analízis szoftverrel is. A numerikus modellek és paraméterek optimalizálását 2017 év végére, az első tesztkísérletet pedig 2018 végére tervezzük elvégezni. 3 Megtervezünk és megépítünk egy THz-es impulzusokkal meghajtott dielektrikum elektron utógyorsítót. Az elrendezés alapja, hogy egy nagy (~mJ) energiájú THz-es impulzuspár egy dielektrikum rácspár között periodikusan változó elektromágneses teret alakít ki biztosítva, hogy a rácspár között áthaladó relativisztikus elektronok a haladásuk során a THz-es impulzusnak mindig a gyorsító elektromos terét érzékeljék. Az előzetes számolások alapján több 10 MeV/m- (Hungarian)
0 references
A. The main objective of the project is to further develop the extreme field strength terahertz infrastructure in order to produce THz pulses with a peak field strength of 10 MV/cm with the upper end of the frequency range reaching 3 THz (instead of the current 1 THz). In order to achieve the objective, the planned investments must be made and the research tasks necessary for the use of the infrastructure being carried out must be carried out. The two activities can be carried out in parallel, but the resources of the aid are used only for the purchase of the necessary equipment. The secondary objective of the project is to develop an acceleration technique that can produce electron packs of 1 MeV energy using THz pulses with a field strength of 10 MV/cm with an accelerator of at least one accelerator shorter than normal microwave accelerators. 1. Activities needed to expand the infrastructure — Preparation, tendering, evaluation of the necessary procurement procedures, conclusion of supply contracts 6 months after the conclusion of the contract Documentation: Contract of supply concluded for the following items: 1. High-Pulse Energy Pumping Laser; 2. Optical parametric amplifier; 3. Electron cannon; 4. Semiconductor contact grids; 5. TDTS equipment (at the expense of own resources) — installation of TDTS equipment, electron cannon, supply of semiconductor contact grids. Deadline: 12 months after the conclusion of the contract. Documentation: Installation reports — Installation of an optical parametric amplifier. Deadline: 20 months after the conclusion of the contract. Documentation: Commissioning report — Installation of high-pulse-energy pump laser Deadline: 20 months after the conclusion of the contract. Documentation: Entry into service report 2. Development-related research tasks The THz resource development tasks Before procurement: 1 To further develop the THz source based on semiconductor contact grid developed recently, they will continue computer simulations aimed at maximising the efficiency of the THz source and the magnitude of the available field strength. 2 With the contact grid parameters obtained as a result of the simulations, we will design the contact grids to be manufactured. During and after procurement: 1 Focusing system is designed to optimally focus the impulses of high-energy THz sources. 2 With the purchased laser, optical parametric amplifier and semiconductor contact grid, we build the extreme high energy and high bandwidth THz pulse source. 3 The new pulse source is integrated into our THz pump — test measuring system. 4 Linear and nonlinear THz spectroscopy with our improved measuring equipment. We involve our cooperating partners within and outside the PTE. The tasks related to the THz electron accelerator 1 design and build an electron accelerator based on focused THz pulse pairs. (Current microwave particle accelerators are complex-infrastructured equipment, and their construction and operation cost enormously. Looking for simpler, more cost-effective solutions in recent decades, laser pulses have been designed based on acceleration in dielectric structures, which can be alternatives to 100 m long conventional particle accelerators. However, the short wavelength or periodide of the initially proposed visible or near-infrared laser pulses makes it impossible to effectively accelerate particle packs with significant charges. Using THz pulses with wavelengths greater than visible, both the interaction length and the total filling of particles can be significantly increased.) 2 Based on preliminary calculations, effective acceleration can be achieved, resulting in electrons’ energy reaching 100 keV. Such energy electrons can be widely used in material testing, medicine and industry. For the experimental implementation, we plan to write numerical models with which several parameters (e.g. the wavelength and focus of the THz pulse) will be optimised in order to achieve the maximum electron energy. The optimised layout will also be tested with commertial finite element analysis software. We plan to optimise the numerical models and parameters by the end of 2017 and the first test experiment by the end of 2018. 3 we design and build a dielectric electron after-accelerator powered by THz pulses. The layout is based on the fact that a pair of THz pulses with high (~mJ) energy creates a periodically variable electromagnetic field between a dielectric grid pair, ensuring that relativistic electrons passing through the grid pair always perceive the electric space of the accelerator pulse as they move. According to preliminary calculations, more than 10 MeV/m— (English)
8 February 2022
0 references
Pécs, Baranya
0 references
Identifiers
GINOP-2.3.3-15-2016-00033
0 references