Development of a system to solve a new variant of a real transport problem using discrete optimisation algorithms (accurate and approximate) and advanced machine learning techniques (Smart Drive) (Q122681): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed label, description and/or aliases in nl, and other parts: Adding Dutch translations)
(‎Changed label, description and/or aliases in it, and other parts: Adding Italian translations)
label / itlabel / it
 
Sviluppo di un sistema per risolvere una nuova variante di reale problema di trasporto utilizzando algoritmi (accurati e approssimativi) ottimizzazione di tecniche discrete e avanzate di machine learning (Smart Drive)
Property / summary
 
L'obiettivo del progetto è quello di sviluppare una nuova variante di un problema di trasporto complesso che rifletta scenari di trasporto reali quali costi di viaggio dinamicamente variabili, capacità della flotta, intervalli temporali con margini o definizione delle preferenze di viaggio. Saranno sviluppati nuovi algoritmi (accurati e approssimativi, anche evolutivi) per risolvere il problema dei trasporti proposto e prevedere la domanda di servizi di trasporto (ad esempio sulla base di dati storici o volumi di traffico). Questi algoritmi saranno verificati in modo completo (quantitativamente, qualitativamente e statisticamente) e convalidati in un ambiente operativo. Tale approccio globale per risolvere i problemi dei trasporti non è ancora stato conosciuto o applicato a livello mondiale e i risultati della ricerca forniranno un importante contributo allo sviluppo di algoritmi evolutivi e di apprendimento automatico, anche a causa della loro genericità. (Italian)
Property / summary: L'obiettivo del progetto è quello di sviluppare una nuova variante di un problema di trasporto complesso che rifletta scenari di trasporto reali quali costi di viaggio dinamicamente variabili, capacità della flotta, intervalli temporali con margini o definizione delle preferenze di viaggio. Saranno sviluppati nuovi algoritmi (accurati e approssimativi, anche evolutivi) per risolvere il problema dei trasporti proposto e prevedere la domanda di servizi di trasporto (ad esempio sulla base di dati storici o volumi di traffico). Questi algoritmi saranno verificati in modo completo (quantitativamente, qualitativamente e statisticamente) e convalidati in un ambiente operativo. Tale approccio globale per risolvere i problemi dei trasporti non è ancora stato conosciuto o applicato a livello mondiale e i risultati della ricerca forniranno un importante contributo allo sviluppo di algoritmi evolutivi e di apprendimento automatico, anche a causa della loro genericità. (Italian) / rank
 
Normal rank
Property / summary: L'obiettivo del progetto è quello di sviluppare una nuova variante di un problema di trasporto complesso che rifletta scenari di trasporto reali quali costi di viaggio dinamicamente variabili, capacità della flotta, intervalli temporali con margini o definizione delle preferenze di viaggio. Saranno sviluppati nuovi algoritmi (accurati e approssimativi, anche evolutivi) per risolvere il problema dei trasporti proposto e prevedere la domanda di servizi di trasporto (ad esempio sulla base di dati storici o volumi di traffico). Questi algoritmi saranno verificati in modo completo (quantitativamente, qualitativamente e statisticamente) e convalidati in un ambiente operativo. Tale approccio globale per risolvere i problemi dei trasporti non è ancora stato conosciuto o applicato a livello mondiale e i risultati della ricerca forniranno un importante contributo allo sviluppo di algoritmi evolutivi e di apprendimento automatico, anche a causa della loro genericità. (Italian) / qualifier
 
point in time: 15 January 2022
Timestamp+2022-01-15T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

Revision as of 13:26, 15 January 2022

Project Q122681 in Poland
Language Label Description Also known as
English
Development of a system to solve a new variant of a real transport problem using discrete optimisation algorithms (accurate and approximate) and advanced machine learning techniques (Smart Drive)
Project Q122681 in Poland

    Statements

    0 references
    1,563,763.11 zloty
    0 references
    375,303.15 Euro
    13 January 2020
    0 references
    3,185,872.13 zloty
    0 references
    764,609.31 Euro
    13 January 2020
    0 references
    49.08 percent
    0 references
    1 April 2019
    0 references
    31 October 2020
    0 references
    FUTURE PROCESSING SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ
    0 references
    0 references
    Celem projektu jest opracowanie nowego wariantu złożonego problemu transportowego odzwierciedlającego rzeczywiste scenariusze transportowe, takie jak dynamicznie zmienny koszt przejazdu, zróżnicowana pojemność pojazdów we flocie, okna czasowe z marginesem, czy definiowanie preferencji dotyczących przejazdu. Opracowane zostaną nowe algorytmy (dokładne i przybliżone, w tym ewolucyjne) do rozwiązywania zaproponowanego problemu transportowego oraz do predykcji zapotrzebowania na usługi transportowe (np. na podstawie danych historycznych czy informacji dotyczących natężenia ruchu). Algorytmy te zostaną wszechstronnie zweryfikowane (ilościowo, jakościowo i statystycznie) i zwalidowane w środowisku operacyjnym. Takie kompleksowe podejście do rozwiązywania problemów transportowych nie było dotychczas znane ani stosowane w skali świata, a wyniki badań będą stanowić istotny wkład w rozwój algorytmów ewolucyjnych i uczenia maszynowego, również ze względu na ich generyczność. (Polish)
    0 references
    The aim of the project is to develop a new variant of a complex transport problem reflecting actual transport scenarios, such as dynamically variable travel costs, different fleet capacity, time windows with margins, and defining travel preferences. New algorithms (accurate and approximate, including evolutionary) will be developed to solve the proposed transport problem and to predict the demand for transport services (e.g. based on historical data or traffic volume information). These algorithms will be versatilely verified (quantitatively, qualitatively and statistically) and validated in the operating environment. Such a comprehensive approach to solving transport problems has not yet been known or applied worldwide, and research results will make an important contribution to the development of evolutionary algorithms and machine learning, also because of their genericity. (English)
    21 October 2020
    0 references
    L’objectif du projet est de développer une nouvelle variante d’un problème de transport complexe reflétant des scénarios réels de transport tels que les coûts de déplacement dynamiquement variables, la capacité variable de la flotte, les fenêtres horaires avec marges ou la définition des préférences de voyage. De nouveaux algorithmes (précis et approximatifs, y compris évolutifs) seront mis au point pour résoudre le problème de transport proposé et pour prévoir la demande de services de transport (par exemple, sur la base de données historiques ou de volumes de trafic). Ces algorithmes seront vérifiés de manière exhaustive (quantitativement, qualitativement et statistiquement) et validés dans un environnement opérationnel. Une telle approche globale de la résolution des problèmes de transport n’a pas encore été connue ou appliquée à l’échelle mondiale, et les résultats de la recherche apporteront une contribution importante au développement d’algorithmes évolutifs et d’apprentissage automatique, notamment en raison de leur caractère générique. (French)
    2 December 2021
    0 references
    Ziel des Projekts ist es, eine neue Variante eines komplexen Transportproblems zu entwickeln, das reale Transportszenarien wie dynamisch variable Reisekosten, unterschiedliche Flottenkapazitäten, Zeitfenster mit Margen oder die Festlegung von Reisepräferenzen widerspiegelt. Zur Lösung des vorgeschlagenen Verkehrsproblems und zur Vorhersage der Nachfrage nach Verkehrsdiensten (z. B. basierend auf historischen Daten oder Verkehrsvolumina) werden neue Algorithmen (genaue und ungefähre, einschließlich evolutionärer) Algorithmen entwickelt. Diese Algorithmen werden umfassend (quantitativ, qualitativ und statistisch) überprüft und in einer betrieblichen Umgebung validiert. Ein solcher umfassender Ansatz zur Lösung von Verkehrsproblemen ist noch nicht weltweit bekannt oder angewandt worden, und Forschungsergebnisse werden einen wichtigen Beitrag zur Entwicklung von evolutionären Algorithmen und maschinellem Lernen leisten, auch aufgrund ihrer Generika. (German)
    8 December 2021
    0 references
    Het doel van het project is om een nieuwe variant te ontwikkelen van een complex vervoersprobleem waarin reële vervoersscenario’s worden weerspiegeld, zoals dynamisch variabele reiskosten, wisselende vlootcapaciteit, tijdvensters met marges of het definiëren van reisvoorkeuren. Er zullen nieuwe algoritmen (nauwkeurig en bij benadering, inclusief evolutionair) worden ontwikkeld om het voorgestelde vervoersprobleem op te lossen en de vraag naar vervoersdiensten te voorspellen (bv. op basis van historische gegevens of verkeersvolumes). Deze algoritmen worden uitgebreid (kwantitatief, kwalitatief en statistisch) geverifieerd en gevalideerd in een operationele omgeving. Een dergelijke alomvattende aanpak voor het oplossen van vervoersproblemen is wereldwijd nog niet bekend of toegepast, en onderzoeksresultaten zullen een belangrijke bijdrage leveren aan de ontwikkeling van evolutionaire algoritmen en machine learning, mede vanwege hun generieke aard. (Dutch)
    17 December 2021
    0 references
    L'obiettivo del progetto è quello di sviluppare una nuova variante di un problema di trasporto complesso che rifletta scenari di trasporto reali quali costi di viaggio dinamicamente variabili, capacità della flotta, intervalli temporali con margini o definizione delle preferenze di viaggio. Saranno sviluppati nuovi algoritmi (accurati e approssimativi, anche evolutivi) per risolvere il problema dei trasporti proposto e prevedere la domanda di servizi di trasporto (ad esempio sulla base di dati storici o volumi di traffico). Questi algoritmi saranno verificati in modo completo (quantitativamente, qualitativamente e statisticamente) e convalidati in un ambiente operativo. Tale approccio globale per risolvere i problemi dei trasporti non è ancora stato conosciuto o applicato a livello mondiale e i risultati della ricerca forniranno un importante contributo allo sviluppo di algoritmi evolutivi e di apprendimento automatico, anche a causa della loro genericità. (Italian)
    15 January 2022
    0 references

    Identifiers

    RPSL.01.02.00-24-0315/18
    0 references