Development of an innovative prototype driver’s work plan generator in collective transport management systems based on evolutionary algorithms. (Q81347): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed label, description and/or aliases in fr: translated_label)
(‎Created claim: summary (P836): SA 42799(2015/X) L’objet du projet est de commander des travaux de R & D visant à développer un prototype d’un nouveau service basé sur les algorithmes évolutifs uniques du générateur de plan de travail du conducteur dans les systèmes de gestion collective des transports. Le service sera basé sur la génération d’horaires basés sur des données d’entrée pour toute une gamme de variables, telles que les conducteurs, les véhicules, les horaires, les...)
Property / summary
 
SA 42799(2015/X) L’objet du projet est de commander des travaux de R & D visant à développer un prototype d’un nouveau service basé sur les algorithmes évolutifs uniques du générateur de plan de travail du conducteur dans les systèmes de gestion collective des transports. Le service sera basé sur la génération d’horaires basés sur des données d’entrée pour toute une gamme de variables, telles que les conducteurs, les véhicules, les horaires, les horaires, les heures de pointe, les conditions de travail résultant de la réglementation du travail des conducteurs, les tarifs horaires pour le temps de travail régulier et les heures supplémentaires, les conditions formelles et légales du marché du transporteur et bien d’autres. L’objectif est de planifier le travail de tous les conducteurs exactement pour le nombre d’heures selon les heures standard de m-ca, afin d’atteindre le coût minimal d’exécution du plan de transport pour le m-ca, et d’assurer un nombre minimal de tâches de transport non planifiées (ou d’assurer le personnel de toutes les tâches de transport chaque jour du mois). En outre, les fonctionnalités importantes de la solution développée dans le cadre du projet sont les suivantes: même la répartition du nombre de jours ouvrables les samedis et dimanches et les jours fériés et même la répartition du nombre de «réserves» entre les jours du 1er quart et le changement II. Les solutions actuellement proposées sur le marché sont imparfaites car elles sont basées sur des algorithmes gourmands. Ce sont des méthodes heuristiques (c’est-à-dire qu’elles donnent des solutions approximatives) et le temps de calcul est très long. Dans les grands ensembles de données (grandes agglomérations urbaines), cette fois-ci est inacceptable. Le problème de recherche NP — entièrement planifié pour être résolu par Algor. analyse évolutionnaire une gamme beaucoup plus large de solutions acceptables afin de trouver la solution optimale. Les algorithmes gourmands traditionnels prennent des décisions locales optimales sans examiner les effets de ces choix dans les prochaines étapes. L’utilisateur final du service réduira les coûts mensuels qui génèrent les ressources nécessaires pour fournir les services de transport (principalement le nombre de conducteurs nécessaires et flo (French)
Property / summary: SA 42799(2015/X) L’objet du projet est de commander des travaux de R & D visant à développer un prototype d’un nouveau service basé sur les algorithmes évolutifs uniques du générateur de plan de travail du conducteur dans les systèmes de gestion collective des transports. Le service sera basé sur la génération d’horaires basés sur des données d’entrée pour toute une gamme de variables, telles que les conducteurs, les véhicules, les horaires, les horaires, les heures de pointe, les conditions de travail résultant de la réglementation du travail des conducteurs, les tarifs horaires pour le temps de travail régulier et les heures supplémentaires, les conditions formelles et légales du marché du transporteur et bien d’autres. L’objectif est de planifier le travail de tous les conducteurs exactement pour le nombre d’heures selon les heures standard de m-ca, afin d’atteindre le coût minimal d’exécution du plan de transport pour le m-ca, et d’assurer un nombre minimal de tâches de transport non planifiées (ou d’assurer le personnel de toutes les tâches de transport chaque jour du mois). En outre, les fonctionnalités importantes de la solution développée dans le cadre du projet sont les suivantes: même la répartition du nombre de jours ouvrables les samedis et dimanches et les jours fériés et même la répartition du nombre de «réserves» entre les jours du 1er quart et le changement II. Les solutions actuellement proposées sur le marché sont imparfaites car elles sont basées sur des algorithmes gourmands. Ce sont des méthodes heuristiques (c’est-à-dire qu’elles donnent des solutions approximatives) et le temps de calcul est très long. Dans les grands ensembles de données (grandes agglomérations urbaines), cette fois-ci est inacceptable. Le problème de recherche NP — entièrement planifié pour être résolu par Algor. analyse évolutionnaire une gamme beaucoup plus large de solutions acceptables afin de trouver la solution optimale. Les algorithmes gourmands traditionnels prennent des décisions locales optimales sans examiner les effets de ces choix dans les prochaines étapes. L’utilisateur final du service réduira les coûts mensuels qui génèrent les ressources nécessaires pour fournir les services de transport (principalement le nombre de conducteurs nécessaires et flo (French) / rank
 
Normal rank
Property / summary: SA 42799(2015/X) L’objet du projet est de commander des travaux de R & D visant à développer un prototype d’un nouveau service basé sur les algorithmes évolutifs uniques du générateur de plan de travail du conducteur dans les systèmes de gestion collective des transports. Le service sera basé sur la génération d’horaires basés sur des données d’entrée pour toute une gamme de variables, telles que les conducteurs, les véhicules, les horaires, les horaires, les heures de pointe, les conditions de travail résultant de la réglementation du travail des conducteurs, les tarifs horaires pour le temps de travail régulier et les heures supplémentaires, les conditions formelles et légales du marché du transporteur et bien d’autres. L’objectif est de planifier le travail de tous les conducteurs exactement pour le nombre d’heures selon les heures standard de m-ca, afin d’atteindre le coût minimal d’exécution du plan de transport pour le m-ca, et d’assurer un nombre minimal de tâches de transport non planifiées (ou d’assurer le personnel de toutes les tâches de transport chaque jour du mois). En outre, les fonctionnalités importantes de la solution développée dans le cadre du projet sont les suivantes: même la répartition du nombre de jours ouvrables les samedis et dimanches et les jours fériés et même la répartition du nombre de «réserves» entre les jours du 1er quart et le changement II. Les solutions actuellement proposées sur le marché sont imparfaites car elles sont basées sur des algorithmes gourmands. Ce sont des méthodes heuristiques (c’est-à-dire qu’elles donnent des solutions approximatives) et le temps de calcul est très long. Dans les grands ensembles de données (grandes agglomérations urbaines), cette fois-ci est inacceptable. Le problème de recherche NP — entièrement planifié pour être résolu par Algor. analyse évolutionnaire une gamme beaucoup plus large de solutions acceptables afin de trouver la solution optimale. Les algorithmes gourmands traditionnels prennent des décisions locales optimales sans examiner les effets de ces choix dans les prochaines étapes. L’utilisateur final du service réduira les coûts mensuels qui génèrent les ressources nécessaires pour fournir les services de transport (principalement le nombre de conducteurs nécessaires et flo (French) / qualifier
 
point in time: 30 November 2021
Timestamp+2021-11-30T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

Revision as of 14:48, 30 November 2021

Project Q81347 in Poland
Language Label Description Also known as
English
Development of an innovative prototype driver’s work plan generator in collective transport management systems based on evolutionary algorithms.
Project Q81347 in Poland

    Statements

    0 references
    327,250.0 zloty
    0 references
    78,540.0 Euro
    13 January 2020
    0 references
    385,000.0 zloty
    0 references
    92,400.0 Euro
    13 January 2020
    0 references
    85.0 percent
    0 references
    1 October 2019
    0 references
    30 September 2020
    0 references
    ITS TECHNOLOGY – SOLVEO SP. Z O. O. SP. K.
    0 references
    0 references
    SA 42799(2015/X) Przedmiotem projektu jest zlecenie prac B+R mających na celu opracowanie prototypu nowej usługi opartej o unikalne algorytmy ewolucyjne generatora planu pracy kierowców w systemach zarządzania transportem zbiorowym. Usługa będzie opierać się na generowaniu harmonogramu na podstawie danych wejściowych, dotyczących całego szeregu zmiennych, takich jak kierowcy, pojazdy, kalendarz przewozów, rozkład jazdy, godziny szczytu, warunki pracy wynikające z regulaminu pracy kierowców, stawki godzinowe za regulaminowy czas pracy i za nadgodziny, uwarunkowania formalno-prawne rynku, na którym działa przewoźnik i wiele innych. Celem jest zaplanowanie pracy wszystkim kierowcom dokładnie na ilość godzin zgodną z normą godzin m-ca, tak aby osiągnąć minim. koszt realizacji planu przewozów dla m-ca, oraz zapewnić minim. ilość niezaplanowanych w harmon. zadań przewozowych (lub zapewnić obsadę wszystkich zadań przewozowych w każdym dniu miesiąca). Dodatkowo istotnymi funkcjonalnościami opracowywanego w ramach projektu rozwiązania mają być: równomierny rozkład ilości dni pracy w soboty i niedziele i święta oraz równomierny rozkład ilości „rezerw” w poszczególne dni na I zmianie i II zmianie. Obecnie oferowane na rynku rozwiązania są niedoskonałe ponieważ opierają się na algorytmach zachłannych. Są to metody heurystyczne (czyli dają rozwiązania przybliżone) a czas obliczeń jest bardzo długi. W dużych zestawach danych (duże aglomeracje miejskie) czas ten jest nieakceptowalny. Problem badawczy NP - zupełny planowany do rozwiązania poprzez Algor. ewolucyjne analizują znacznie szerszy zakres dopuszczalnych rozwiązań w celu znalezienia rozwiązania optymalnego. Tradycyjne algorytmy zachłanne dokonują decyzji lokalnie optymalnych bez badania skutków tych wyborów w kolejnych krokach. Użytkownikowi końc. usługa pozwoli na ograniczenie kosztów miesięcznych jakie generują zasoby niezbędne do świadczenia usług transportowych (przede wszystkim liczba niezbędnych kierowców oraz flo (Polish)
    0 references
    SA 42799(2015/X) The object of the project is to commission R & D works aimed at developing a prototype of a new service based on unique evolutionary algorithms of driver’s work plan generator in collective transport management systems. The service will be based on scheduling on the basis of input data for a whole range of variables such as drivers, vehicles, schedules, timetables, peak hours, working conditions resulting from driver’s working regulations, hourly rates for statutory working time and overtime, formal and legal conditions of the market in which the carrier operates and many others. The aim is to plan the work of all drivers precisely for the number of hours in accordance with the standard of m-ca, in order to achieve the minimum cost of implementation of the transport plan for the mc, and to provide minim. the amount of unscheduled transport tasks (or ensure that all transport tasks are manned every day of the month). In addition, important functionalities of the solution developed within the framework of the project are to be: even distribution of the number of working days on Saturdays and Sundays and holidays and even distribution of the number of “reserves” per day for the first and second shifts. Currently, the solutions offered on the market are imperfect because they are based on greedy algorithms. These are heuristic methods (i.e. they give approximate solutions) and the time of calculation is very long. In large data sets (large urban agglomerations), this time is unacceptable. Research problem NP – a complete solution to be solved through Algor. evolutionary analyses a much broader range of acceptable solutions to find an optimal solution. Traditional greedy algorithms make locally optimal decisions without examining the effects of these choices in subsequent steps. End user service will allow to reduce the monthly costs of the resources necessary to provide transport services (primarily the number of necessary drivers and fleet (English)
    14 October 2020
    0 references
    SA 42799(2015/X) L’objet du projet est de commander des travaux de R & D visant à développer un prototype d’un nouveau service basé sur les algorithmes évolutifs uniques du générateur de plan de travail du conducteur dans les systèmes de gestion collective des transports. Le service sera basé sur la génération d’horaires basés sur des données d’entrée pour toute une gamme de variables, telles que les conducteurs, les véhicules, les horaires, les horaires, les heures de pointe, les conditions de travail résultant de la réglementation du travail des conducteurs, les tarifs horaires pour le temps de travail régulier et les heures supplémentaires, les conditions formelles et légales du marché du transporteur et bien d’autres. L’objectif est de planifier le travail de tous les conducteurs exactement pour le nombre d’heures selon les heures standard de m-ca, afin d’atteindre le coût minimal d’exécution du plan de transport pour le m-ca, et d’assurer un nombre minimal de tâches de transport non planifiées (ou d’assurer le personnel de toutes les tâches de transport chaque jour du mois). En outre, les fonctionnalités importantes de la solution développée dans le cadre du projet sont les suivantes: même la répartition du nombre de jours ouvrables les samedis et dimanches et les jours fériés et même la répartition du nombre de «réserves» entre les jours du 1er quart et le changement II. Les solutions actuellement proposées sur le marché sont imparfaites car elles sont basées sur des algorithmes gourmands. Ce sont des méthodes heuristiques (c’est-à-dire qu’elles donnent des solutions approximatives) et le temps de calcul est très long. Dans les grands ensembles de données (grandes agglomérations urbaines), cette fois-ci est inacceptable. Le problème de recherche NP — entièrement planifié pour être résolu par Algor. analyse évolutionnaire une gamme beaucoup plus large de solutions acceptables afin de trouver la solution optimale. Les algorithmes gourmands traditionnels prennent des décisions locales optimales sans examiner les effets de ces choix dans les prochaines étapes. L’utilisateur final du service réduira les coûts mensuels qui génèrent les ressources nécessaires pour fournir les services de transport (principalement le nombre de conducteurs nécessaires et flo (French)
    30 November 2021
    0 references

    Identifiers

    POIR.02.03.02-18-0014/19
    0 references