Q3750496 (Q3750496): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed an Item: Edited by the infer coords bot - inferring coordiantes from postal codes)
(‎Created claim: summary (P836): The aim of the project is to create a unique experimental simulation environment for new power plant concepts, which can also be utilised for training purposes. The experimental simulation environment, together with modelling tools, enables the development of new low-emission and high-efficiency power and heating plant concepts. The operation of traditional power and heating plants will change as stricter emission regulations and renewable solar...)
Property / summary
 
The aim of the project is to create a unique experimental simulation environment for new power plant concepts, which can also be utilised for training purposes. The experimental simulation environment, together with modelling tools, enables the development of new low-emission and high-efficiency power and heating plant concepts. The operation of traditional power and heating plants will change as stricter emission regulations and renewable solar and wind energy increase. The growing share of solar and wind energy changes the way traditional plants drive and operate hours. Dynamic driving requires new technologies and concepts to improve plant load change performance. In addition to the load-reversing capability, the requirements for strict emission limits must also be reconciled in dynamic driving conditions, as well as efficiency requirements in part load and change situations.The simulation environment is implemented by integrating gas utilisation capabilities into VTT’s combustion research environment. Gas-use capabilities enable the use of natural gas/biogas as a regulating fuel and the development of new innovative concepts. Gas can directly reduce emissions and improve plant load change capacity. Improved load change performance helps the plant to support the electricity and heat grid better when the production of solar and wind energy varies depending on the weather conditions. In addition, gas can be utilised in innovative post-combustion and steam firing solutions to ensure low emissions in load change situations and high efficiency of electricity production with challenging fuels (waste, agro, etc.). In addition, an innovative thermoelectric module is designed and implemented in the research environment, which can transform the heat stream directly into an electric current without moving parts. The module can be used e.g. for the utilisation of waste heat directly into electricity. In addition, the module enables decentralised off-grid electricity production from different heat sources and adjustable heat transfer surfaces in power and heating plant concepts. The research objective is to be able to meet the changed demands of new power plants in future energy systems. In the future, power plants will be required to have more flexible load conversion capacity and capacity, as well as lower emissions and high efficiency in dynamic driving conditions throughout the load change area. In addition, different hybrid concepts for integrating renewable energy (e.g. solar, biomass) into conventional power plants are subject to growing research demand. The research environment, equipped with gas use possibilities and a thermoelectric module, provides excellent tips for developing future power and heating plant concepts for both domestic and international export markets, together with industry and research institutes. (English)
Property / summary: The aim of the project is to create a unique experimental simulation environment for new power plant concepts, which can also be utilised for training purposes. The experimental simulation environment, together with modelling tools, enables the development of new low-emission and high-efficiency power and heating plant concepts. The operation of traditional power and heating plants will change as stricter emission regulations and renewable solar and wind energy increase. The growing share of solar and wind energy changes the way traditional plants drive and operate hours. Dynamic driving requires new technologies and concepts to improve plant load change performance. In addition to the load-reversing capability, the requirements for strict emission limits must also be reconciled in dynamic driving conditions, as well as efficiency requirements in part load and change situations.The simulation environment is implemented by integrating gas utilisation capabilities into VTT’s combustion research environment. Gas-use capabilities enable the use of natural gas/biogas as a regulating fuel and the development of new innovative concepts. Gas can directly reduce emissions and improve plant load change capacity. Improved load change performance helps the plant to support the electricity and heat grid better when the production of solar and wind energy varies depending on the weather conditions. In addition, gas can be utilised in innovative post-combustion and steam firing solutions to ensure low emissions in load change situations and high efficiency of electricity production with challenging fuels (waste, agro, etc.). In addition, an innovative thermoelectric module is designed and implemented in the research environment, which can transform the heat stream directly into an electric current without moving parts. The module can be used e.g. for the utilisation of waste heat directly into electricity. In addition, the module enables decentralised off-grid electricity production from different heat sources and adjustable heat transfer surfaces in power and heating plant concepts. The research objective is to be able to meet the changed demands of new power plants in future energy systems. In the future, power plants will be required to have more flexible load conversion capacity and capacity, as well as lower emissions and high efficiency in dynamic driving conditions throughout the load change area. In addition, different hybrid concepts for integrating renewable energy (e.g. solar, biomass) into conventional power plants are subject to growing research demand. The research environment, equipped with gas use possibilities and a thermoelectric module, provides excellent tips for developing future power and heating plant concepts for both domestic and international export markets, together with industry and research institutes. (English) / rank
 
Normal rank
Property / summary: The aim of the project is to create a unique experimental simulation environment for new power plant concepts, which can also be utilised for training purposes. The experimental simulation environment, together with modelling tools, enables the development of new low-emission and high-efficiency power and heating plant concepts. The operation of traditional power and heating plants will change as stricter emission regulations and renewable solar and wind energy increase. The growing share of solar and wind energy changes the way traditional plants drive and operate hours. Dynamic driving requires new technologies and concepts to improve plant load change performance. In addition to the load-reversing capability, the requirements for strict emission limits must also be reconciled in dynamic driving conditions, as well as efficiency requirements in part load and change situations.The simulation environment is implemented by integrating gas utilisation capabilities into VTT’s combustion research environment. Gas-use capabilities enable the use of natural gas/biogas as a regulating fuel and the development of new innovative concepts. Gas can directly reduce emissions and improve plant load change capacity. Improved load change performance helps the plant to support the electricity and heat grid better when the production of solar and wind energy varies depending on the weather conditions. In addition, gas can be utilised in innovative post-combustion and steam firing solutions to ensure low emissions in load change situations and high efficiency of electricity production with challenging fuels (waste, agro, etc.). In addition, an innovative thermoelectric module is designed and implemented in the research environment, which can transform the heat stream directly into an electric current without moving parts. The module can be used e.g. for the utilisation of waste heat directly into electricity. In addition, the module enables decentralised off-grid electricity production from different heat sources and adjustable heat transfer surfaces in power and heating plant concepts. The research objective is to be able to meet the changed demands of new power plants in future energy systems. In the future, power plants will be required to have more flexible load conversion capacity and capacity, as well as lower emissions and high efficiency in dynamic driving conditions throughout the load change area. In addition, different hybrid concepts for integrating renewable energy (e.g. solar, biomass) into conventional power plants are subject to growing research demand. The research environment, equipped with gas use possibilities and a thermoelectric module, provides excellent tips for developing future power and heating plant concepts for both domestic and international export markets, together with industry and research institutes. (English) / qualifier
 
point in time: 22 November 2021
Timestamp+2021-11-22T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

Revision as of 22:52, 22 November 2021

Project Q3750496 in France
Language Label Description Also known as
English
No label defined
Project Q3750496 in France

    Statements

    0 references
    134,988 Euro
    0 references
    159,840.0 Euro
    0 references
    84.45 percent
    0 references
    1 January 2016
    0 references
    31 August 2017
    0 references
    Teknologian tutkimuskeskus VTT Oy
    0 references

    62°14'34.12"N, 25°44'59.32"E
    0 references
    40100
    0 references
    Hankkeen tavoitteena on luoda ainutlaatuinen uusien voimalaitoskonseptien kokeellinen simulointiympäristö, jotavoidaan hyödyntää myös koulutuskäytössä. Kokeellinen simulointiympäristö yhdessä mallinnustyökalujen kanssamahdollistaa uusien entistä vähäpäästöisempien ja korkealla hyötysuhteella toimivien voima- ja lämpölaitoskonseptienkehittämisen. Perinteisten voima- ja lämpölaitosten toiminta tulee muuttumaan tiukkenevien päästömääräysten jauusituvan aurinko- ja tuulienergian lisääntyessä. Kasvava aurinko- ja tuulienergian osuus muuttaa perinteistenlaitosten ajotapaa ja käyttötunteja. Dynaaminen ajotapa edellyttää uusia tekniikoita ja konsepteja, joilla laitostenkuormanmuutoskykyä voidaan parantaa. Kuormanmuutoskyvyn lisäksi pitää yhteen sovittaa vaatimukset tiukoistapäästörajoista myös dynaamisessa ajotilanteessa, sekä hyötysuhde vaatimukset osakuorma ja muutostilanteissa.Simulointiympäristö toteutetaan integroimalla kaasun käyttövalmiudet VTT:n polttotutkimusympäristöön. Kaasunkäyttövalmiudet mahdollistavat maakaasun/biokaasun käytön säätävänä polttoaineena sekä uusien innovatiivistenkonseptien kehityksen. Kaasun avulla voidaan suoraan vähentää päästöjä sekä parantaa laitoksenkuormanmuutoskykyä. Parempi kuormanmuutoskyky auttaa laitosta tukemaan sähkö- ja lämpöverkkoa paremmin, kunaurinko- ja tuulienergian tuotanto vaihtelevat sääolosuhteista riippuen. Lisäksi kaasua voidaan hyödyntääinnovatiivisissa jälkipoltto- ja höyryn tulistusratkaisuissa varmistamaan matalat päästöt kuormanmuutostilanteissa sekäkorkea sähköntuotannon hyötysuhde haastavilla polttoaineilla (jäte, agro yms). Lisäksi tutkimusympäristöönsuunnitellaan ja toteutetaan innovatiivinen lämpösähkö-moduuli, jolla voidaan muuttaa lämpövirta suoraansähkövirraksi ilman liikkuvia osia. Moduulia voidaan käyttää esim. hukkalämpöjen hyödyntämisessä suoraansähköksi. Lisäksi moduuli mahdollistaa hajautetun off-grid sähkön tuotannon eri lämmön lähteistä ja säädettävienlämmönsiirtopintojen tutkimuksen voima- ja lämpölaitoskonsepteissa. Tutkimuksellisena tavoitteena on pystyävastaamaan niihin muuttuneisiin vaatimuksiin, joita uusilta voimalaitoksilta edellytetään tulevaisuudenenergiajärjestelmissä. Voimalaitoksilta vaaditaan tulevaisuudessa aiempaa joustavampaa kuorman muutoskykyä jakapasiteettia sekä alhaisempia päästöjä ja korkeaa hyötysuhdetta dynaamisissa ajotilanteissa läpi koko kuormanmuutosalueen. Lisäksi erilaiset hybridikonseptit, joissa perinteisiin voimalaitoksiin integroidaan uusiutuvaa energiaa(esim. aurinko, biomassa) ovat lisääntyvän tutkimuskysynnän kohteena. Kaasun käyttömahdollisuuksilla jalämpösähkö-moduulilla varustettu tutkimusympäristö antaa erinomaiset eväät kehittää yhdessä teollisuuden jatutkimustahojen kanssa tulevaisuuden voima- ja lämpölaitoskonsepteja sekä kotimaan että kansainvälisillevientimarkkinoille. (Finnish)
    0 references
    The aim of the project is to create a unique experimental simulation environment for new power plant concepts, which can also be utilised for training purposes. The experimental simulation environment, together with modelling tools, enables the development of new low-emission and high-efficiency power and heating plant concepts. The operation of traditional power and heating plants will change as stricter emission regulations and renewable solar and wind energy increase. The growing share of solar and wind energy changes the way traditional plants drive and operate hours. Dynamic driving requires new technologies and concepts to improve plant load change performance. In addition to the load-reversing capability, the requirements for strict emission limits must also be reconciled in dynamic driving conditions, as well as efficiency requirements in part load and change situations.The simulation environment is implemented by integrating gas utilisation capabilities into VTT’s combustion research environment. Gas-use capabilities enable the use of natural gas/biogas as a regulating fuel and the development of new innovative concepts. Gas can directly reduce emissions and improve plant load change capacity. Improved load change performance helps the plant to support the electricity and heat grid better when the production of solar and wind energy varies depending on the weather conditions. In addition, gas can be utilised in innovative post-combustion and steam firing solutions to ensure low emissions in load change situations and high efficiency of electricity production with challenging fuels (waste, agro, etc.). In addition, an innovative thermoelectric module is designed and implemented in the research environment, which can transform the heat stream directly into an electric current without moving parts. The module can be used e.g. for the utilisation of waste heat directly into electricity. In addition, the module enables decentralised off-grid electricity production from different heat sources and adjustable heat transfer surfaces in power and heating plant concepts. The research objective is to be able to meet the changed demands of new power plants in future energy systems. In the future, power plants will be required to have more flexible load conversion capacity and capacity, as well as lower emissions and high efficiency in dynamic driving conditions throughout the load change area. In addition, different hybrid concepts for integrating renewable energy (e.g. solar, biomass) into conventional power plants are subject to growing research demand. The research environment, equipped with gas use possibilities and a thermoelectric module, provides excellent tips for developing future power and heating plant concepts for both domestic and international export markets, together with industry and research institutes. (English)
    22 November 2021
    0 references

    Identifiers

    0 references