Q3680678 (Q3680678): Difference between revisions

From EU Knowledge Graph
Jump to navigation Jump to search
(‎Changed label, description and/or aliases in en: Setting new description)
(‎Created claim: summary (P836): The problems associated with microstructures of semi-crystalline thermoplastic polymers are now emerging as major issues, both in terms of basic knowledge and application questions. It has been shown, in particular by partner 1, that semi-crystalline polymers should be described not by a simple two-phase model, but by a three-phase model where the third phase (the rigid amorphous fraction, RAF) is a localised nanophase between crystalline and mo...)
Property / summary
 
The problems associated with microstructures of semi-crystalline thermoplastic polymers are now emerging as major issues, both in terms of basic knowledge and application questions. It has been shown, in particular by partner 1, that semi-crystalline polymers should be described not by a simple two-phase model, but by a three-phase model where the third phase (the rigid amorphous fraction, RAF) is a localised nanophase between crystalline and mobile amorphous phase. Consideration of RAF is essential to understand the physical and chemical properties of many very common materials in the regional industry, both in the packaging sector (Sidel, Aptar) and in the aeronautics sector (Zodiac, Safran). Indeed, the presence of a rigid amorphous nanophase is to be expected not only in the case of semi-crystalline polymers, where the amorphous chains are "blocked by the development of more or less regular crystalline domains, but also in the case of polymer matrix composite materials, which specialises in partner 2, where the action of is exerted by reinforcements at the interface with the matrix. While thermosetting polymers have been almost exclusively used for decades in the aeronautical field, recent advances in synthesis and implementation have allowed the emergence of semi-crystal polymers with thermostable holds. However, technological locks persist and a better understanding of the complex microstructure of these materials seems necessary. For example, the analysis of these materials in terms of a three-phase model has never been done. However, the microstructural understanding of thermoplastic polymer matrix composite materials requires the description of the interfacial matrix/fibre zone, but also the characterisation of local areas of stiffening of the amorphous phase near the interface (if the matrix remains amorphous) or close to the crystalline domains (if the matrix can crystallise), topics not addressed for the time being on such complex materials. The fine study of such complex materials (multiphase composites) is a real challenge, so it is necessary to model and attempt to understand the links of microstructure-mechanical properties by analysing model materials. One of the major pitfalls of such work by physicists is not to investigate its chemical aspect. Polymers are complex materials at all points (distribution of molecular weights, degradation by different mechanisms, presence of impurities and adjuvants, sensitivity to aging) and not being interested in this aspect limits the relevance of this work. Partner 3, through its expertise in polymer chemistry, will significantly strengthen this project and for the first time, Norman researchers in mechanics, chemistry and polymer physics propose a multidisciplinary approach to characterise polymers and their composites.The mechanical behavior of these materials is intimately linked to the solid state structuring of the macromolecules that make up them: crystallinity, RAF... The temperature and shear conditions required for the shaping of composite materials chemically degrade these macromolecules and are therefore likely to induce changes in their structuring and final properties. The aim of this project is therefore to establish links between nanoscale structuring and the macroscopic behaviour of semi-crystalline polymers used for the construction of composites for the aeronautical sector. (English)
Property / summary: The problems associated with microstructures of semi-crystalline thermoplastic polymers are now emerging as major issues, both in terms of basic knowledge and application questions. It has been shown, in particular by partner 1, that semi-crystalline polymers should be described not by a simple two-phase model, but by a three-phase model where the third phase (the rigid amorphous fraction, RAF) is a localised nanophase between crystalline and mobile amorphous phase. Consideration of RAF is essential to understand the physical and chemical properties of many very common materials in the regional industry, both in the packaging sector (Sidel, Aptar) and in the aeronautics sector (Zodiac, Safran). Indeed, the presence of a rigid amorphous nanophase is to be expected not only in the case of semi-crystalline polymers, where the amorphous chains are "blocked by the development of more or less regular crystalline domains, but also in the case of polymer matrix composite materials, which specialises in partner 2, where the action of is exerted by reinforcements at the interface with the matrix. While thermosetting polymers have been almost exclusively used for decades in the aeronautical field, recent advances in synthesis and implementation have allowed the emergence of semi-crystal polymers with thermostable holds. However, technological locks persist and a better understanding of the complex microstructure of these materials seems necessary. For example, the analysis of these materials in terms of a three-phase model has never been done. However, the microstructural understanding of thermoplastic polymer matrix composite materials requires the description of the interfacial matrix/fibre zone, but also the characterisation of local areas of stiffening of the amorphous phase near the interface (if the matrix remains amorphous) or close to the crystalline domains (if the matrix can crystallise), topics not addressed for the time being on such complex materials. The fine study of such complex materials (multiphase composites) is a real challenge, so it is necessary to model and attempt to understand the links of microstructure-mechanical properties by analysing model materials. One of the major pitfalls of such work by physicists is not to investigate its chemical aspect. Polymers are complex materials at all points (distribution of molecular weights, degradation by different mechanisms, presence of impurities and adjuvants, sensitivity to aging) and not being interested in this aspect limits the relevance of this work. Partner 3, through its expertise in polymer chemistry, will significantly strengthen this project and for the first time, Norman researchers in mechanics, chemistry and polymer physics propose a multidisciplinary approach to characterise polymers and their composites.The mechanical behavior of these materials is intimately linked to the solid state structuring of the macromolecules that make up them: crystallinity, RAF... The temperature and shear conditions required for the shaping of composite materials chemically degrade these macromolecules and are therefore likely to induce changes in their structuring and final properties. The aim of this project is therefore to establish links between nanoscale structuring and the macroscopic behaviour of semi-crystalline polymers used for the construction of composites for the aeronautical sector. (English) / rank
 
Normal rank
Property / summary: The problems associated with microstructures of semi-crystalline thermoplastic polymers are now emerging as major issues, both in terms of basic knowledge and application questions. It has been shown, in particular by partner 1, that semi-crystalline polymers should be described not by a simple two-phase model, but by a three-phase model where the third phase (the rigid amorphous fraction, RAF) is a localised nanophase between crystalline and mobile amorphous phase. Consideration of RAF is essential to understand the physical and chemical properties of many very common materials in the regional industry, both in the packaging sector (Sidel, Aptar) and in the aeronautics sector (Zodiac, Safran). Indeed, the presence of a rigid amorphous nanophase is to be expected not only in the case of semi-crystalline polymers, where the amorphous chains are "blocked by the development of more or less regular crystalline domains, but also in the case of polymer matrix composite materials, which specialises in partner 2, where the action of is exerted by reinforcements at the interface with the matrix. While thermosetting polymers have been almost exclusively used for decades in the aeronautical field, recent advances in synthesis and implementation have allowed the emergence of semi-crystal polymers with thermostable holds. However, technological locks persist and a better understanding of the complex microstructure of these materials seems necessary. For example, the analysis of these materials in terms of a three-phase model has never been done. However, the microstructural understanding of thermoplastic polymer matrix composite materials requires the description of the interfacial matrix/fibre zone, but also the characterisation of local areas of stiffening of the amorphous phase near the interface (if the matrix remains amorphous) or close to the crystalline domains (if the matrix can crystallise), topics not addressed for the time being on such complex materials. The fine study of such complex materials (multiphase composites) is a real challenge, so it is necessary to model and attempt to understand the links of microstructure-mechanical properties by analysing model materials. One of the major pitfalls of such work by physicists is not to investigate its chemical aspect. Polymers are complex materials at all points (distribution of molecular weights, degradation by different mechanisms, presence of impurities and adjuvants, sensitivity to aging) and not being interested in this aspect limits the relevance of this work. Partner 3, through its expertise in polymer chemistry, will significantly strengthen this project and for the first time, Norman researchers in mechanics, chemistry and polymer physics propose a multidisciplinary approach to characterise polymers and their composites.The mechanical behavior of these materials is intimately linked to the solid state structuring of the macromolecules that make up them: crystallinity, RAF... The temperature and shear conditions required for the shaping of composite materials chemically degrade these macromolecules and are therefore likely to induce changes in their structuring and final properties. The aim of this project is therefore to establish links between nanoscale structuring and the macroscopic behaviour of semi-crystalline polymers used for the construction of composites for the aeronautical sector. (English) / qualifier
 
point in time: 18 November 2021
Timestamp+2021-11-18T00:00:00Z
Timezone+00:00
CalendarGregorian
Precision1 day
Before0
After0

Revision as of 17:40, 18 November 2021

Project Q3680678 in France
Language Label Description Also known as
English
No label defined
Project Q3680678 in France

    Statements

    0 references
    90,482.11 Euro
    0 references
    180,964.22 Euro
    0 references
    50.0 percent
    0 references
    30 September 2019
    0 references
    UNIVERSITE DE ROUEN-NORMANDIE
    0 references
    76821
    0 references
    Les problématiques associées aux microstructures des polymères thermoplastiques semi-cristallins apparaissent aujourd'hui comme des enjeux majeurs, en termes de connaissances fondamentales mais aussi pour des questionnements applicatifs. Il a été montré, notamment par le partenaire 1, que les polymères semi-cristallins doivent être décrits non pas par un simple modèle à deux phases, mais par un modèle à trois phases où la 3ème phase (la fraction amorphe rigide, RAF) est une nano-phase localisée entre phase cristalline et phase amorphe mobile. La prise en compte de la RAF est essentielle pour comprendre les propriétés physiques et chimiques de nombreux matériaux très courants dans l'industrie régionale, aussi bien dans le secteur de l'emballage (Sidel, Aptar) que dans celui de l'aéronautique (Zodiac, Safran). En effet, la présence d'une nano-phase amorphe rigide est à prévoir non seulement dans le cas des polymères semi-cristallins, où les chaînes amorphes sont « bloquées par le développement de domaines cristallins plus ou moins réguliers, mais aussi dans le cas des matériaux composites à matrice polymère, spécialité du partenaire 2, où l'action de est exercée par les renforts au niveau de l'interface avec la matrice.Si les polymères thermodurcissables ont été quasiment exclusivement utilisés durant des décennies dans le domaine aéronautique, les avancées récentes en terme de synthèse et de mise en uvre ont permis l'émergence de polymères semi-cristallins thermostables avec des tenues thermomécaniques très prometteuses. Cependant, des verrous technologiques persistent et une meilleure compréhension de la microstructure complexe de ces matériaux semble une nécessité. Par exemple, l'analyse de ces matériaux en termes de modèle à trois phases n'a jamais été faite. Or, la compréhension microstructurale des matériaux composites à matrice polymère thermoplastique passe par la description de la zone interfaciale matrice/fibre, mais également par la caractérisation des domaines locaux de rigidification de la phase amorphe tout près de l'interface (si la matrice reste amorphe) ou à proximité des domaines cristallins (si la matrice peut cristalliser), sujets non abordés pour l'instant sur de tels matériaux complexes. Aussi, avoir une expertise académique dans ce domaine pourra permettre de développer, dans un futur à moyens termes, des collaborations avec les industriels concernés.L'étude fine de matériaux aussi complexes (composites multiphasiques) est un réel challenge, il est donc nécessaire de modéliser et de tenter de comprendre les liens microstructure-propriétés mécaniques en analysant des matériaux modèles. L'un des gros écueils de tels travaux de physiciens est de ne pas en investiguer l'aspect chimique. En effet, les polymères sont des matériaux complexes en tout point (distribution des masses moléculaires, dégradation par différents mécanismes, présence d'impuretés et d'adjuvants, sensibilité au vieillissement) et ne pas s'intéresser a cet aspect limite la pertinence de ces travaux. Le partenaire 3, de par ses compétences dans la chimie des polymères, renforcera significativement ce projet et pour la 1ère fois, des chercheurs normands en mécanique, chimie et physique des polymères proposent une approche multidisciplinaire afin de caractériser les polymères et leurs composites.Le comportement mécanique de ces matériaux est intimement lié à la structuration à l'état solide des macromolécules qui les constituent : cristallinité, RAF... Les conditions de température et de cisaillement requises pour la mise en forme de matériaux composites dégradent chimiquement ces macromolécules et sont donc susceptibles d'induire des modifications de leur structuration et de leurs propriétés finales. Ce projet vise donc à établir des liens entre la structuration à l'échelle nano et le comportement macroscopique des polymères semi-cristallins utilisés pour la réalisation de composites pour le secteur aéronautique. (French)
    0 references
    The problems associated with microstructures of semi-crystalline thermoplastic polymers are now emerging as major issues, both in terms of basic knowledge and application questions. It has been shown, in particular by partner 1, that semi-crystalline polymers should be described not by a simple two-phase model, but by a three-phase model where the third phase (the rigid amorphous fraction, RAF) is a localised nanophase between crystalline and mobile amorphous phase. Consideration of RAF is essential to understand the physical and chemical properties of many very common materials in the regional industry, both in the packaging sector (Sidel, Aptar) and in the aeronautics sector (Zodiac, Safran). Indeed, the presence of a rigid amorphous nanophase is to be expected not only in the case of semi-crystalline polymers, where the amorphous chains are "blocked by the development of more or less regular crystalline domains, but also in the case of polymer matrix composite materials, which specialises in partner 2, where the action of is exerted by reinforcements at the interface with the matrix. While thermosetting polymers have been almost exclusively used for decades in the aeronautical field, recent advances in synthesis and implementation have allowed the emergence of semi-crystal polymers with thermostable holds. However, technological locks persist and a better understanding of the complex microstructure of these materials seems necessary. For example, the analysis of these materials in terms of a three-phase model has never been done. However, the microstructural understanding of thermoplastic polymer matrix composite materials requires the description of the interfacial matrix/fibre zone, but also the characterisation of local areas of stiffening of the amorphous phase near the interface (if the matrix remains amorphous) or close to the crystalline domains (if the matrix can crystallise), topics not addressed for the time being on such complex materials. The fine study of such complex materials (multiphase composites) is a real challenge, so it is necessary to model and attempt to understand the links of microstructure-mechanical properties by analysing model materials. One of the major pitfalls of such work by physicists is not to investigate its chemical aspect. Polymers are complex materials at all points (distribution of molecular weights, degradation by different mechanisms, presence of impurities and adjuvants, sensitivity to aging) and not being interested in this aspect limits the relevance of this work. Partner 3, through its expertise in polymer chemistry, will significantly strengthen this project and for the first time, Norman researchers in mechanics, chemistry and polymer physics propose a multidisciplinary approach to characterise polymers and their composites.The mechanical behavior of these materials is intimately linked to the solid state structuring of the macromolecules that make up them: crystallinity, RAF... The temperature and shear conditions required for the shaping of composite materials chemically degrade these macromolecules and are therefore likely to induce changes in their structuring and final properties. The aim of this project is therefore to establish links between nanoscale structuring and the macroscopic behaviour of semi-crystalline polymers used for the construction of composites for the aeronautical sector. (English)
    18 November 2021
    0 references

    Identifiers

    17P04162
    0 references