Q3673240 (Q3673240): Difference between revisions
Jump to navigation
Jump to search
(Changed label, description and/or aliases in en: Setting new description) |
(Changed an Item: Edited by the infer coords bot - inferring coordiantes from postal codes) |
||||||||||
Property / coordinate location | |||||||||||
49°12'0.97"N, 0°20'57.37"W
| |||||||||||
Property / coordinate location: 49°12'0.97"N, 0°20'57.37"W / rank | |||||||||||
Normal rank |
Revision as of 09:26, 18 November 2021
Project Q3673240 in France
Language | Label | Description | Also known as |
---|---|---|---|
English | No label defined |
Project Q3673240 in France |
Statements
17,996.88 Euro
0 references
50,196.88 Euro
0 references
35.85 percent
0 references
1 July 2016
0 references
31 March 2018
0 references
EPST CNRS
0 references
14052
0 references
Ce projet porte sur la recherche de nouveaux matériaux thermoélectriques et l'étude de leurs propriétés, et correspond au domaine Matériaux durables et intelligents de la RIS3 puisque les applications potentielles de ces matériaux se situent dans le domaine de la récupération d'énergie thermique, et de sa conversion en énergie électrique. Grâce aux effets thermoélectriques, il est en effet possible de transformer une différence de température (T) en différence de potentiel électrique (T) via l'effet Seebeck, ou une différence de potentiel électrique en différence de température via l'effet Peltier. Toute source de chaleur perdue est donc potentiellement une source d'énergie électrique propre. Les effets thermoélectriques ont été découverts à la fin du 19ème siècle, et les applications restent pour le moment limitées à des secteurs de niche telles que les applications spatiales, du fait des rendements relativement faibles (~ 5 % du rendement de Carnot). Le rendement des modules thermoélectriques dépend de la réalisation de ce module (qualité des contacts électriques et des contacts thermiques en particulier), et fortement des propriétés intrinsèques des matériaux qui le constituent. Pour améliorer les rendements, il est essentiel de découvrir de nouvelles familles de matériaux thermoélectriques.Un bon matériau thermoélectrique est caractérisé par une résistivité électrique faible (), une faible conductivité thermique () et un fort coefficient Seebeck (S), afin de maximiser le facteur de mérite ZT = S2T/() pour qu'il atteigne une valeur proche de 1. Historiquement, les meilleurs matériaux thermoélectriques sont des semi-conducteurs à faible gap tels que Bi2Te3, PbTe, SiGe, avec des ZT proches de 1 pour T ~ 300K ou à très haute T (~ 1000°C pour SiGe). Ces matériaux sont efficaces, mais présentent des problèmes de toxicité, ou de stabilité thermique sous air. De plus, le tellure est un élement très rare, qui ne pourra être utilisé pour des applications à grande échelle. La recherche de nouveaux matériaux thermoélectriques a connu un grand essor depuis les années 1990, suite à la publication de différents articles prédisant de fortes augmentations de S dans des matériaux nanostructurés, ou de faibles dans des structures cristallographiques à maille complexe. Il a été également proposé que la présence de fortes corrélations électroniques pouvait augmenter S via une modification de la structure de bande. En 1997, I. Terasaki a montré qu'il était effectivement possible d'obtenir des valeurs de S très élevées, proches de celles d'un semi-conducteur, dans un oxyde métallique NaxCoO2 présentant de fortes corrélations électroniques. Les oxydes étant relativement résistifs, ils n'avaient jusqu'à lors jamais été considérés pour la thermoélectricité. Les oxydes sont constitués d'éléments abondants, non toxiques, et peuvent être très stables à haute température et sous air, ce qui favorise l'utilisation de ces matériaux pour des applications de récupération d'énergie à très haute température. Cet article fondateur a été cité 1600 fois depuis 1997, et a véritablement ouvert une nouvelle voie de recherche extrêmement prometteuse sur les oxydes thermoélectriques, au niveau international. Des collaborations entre le laboratoire CRISMAT et I. Terasaki ont jusqu'à présent eu lieu via des échanges de docteurs et de doctorant. Le but de cette Chaire est à présent de renforcer les collaborations précédentes en bénéficiant d'une présence sur le long terme d'I. Terasaki au laboratoire. Ichiro Terasaki est un expert des propriétés de magnéto-transport dans les oxydes, qui recherche des propriétés originales dérivant de l'effet Seebeck (telles que le photoSeebeck'). En collaboration avec les physiciens et chimistes du CRISMAT, il pourra développer de nouveaux axes de recherche au sein du laboratoire, afin de mieux comprendre la physique de ces matériaux thermoélectriques, et ainsi déterminer les paramètres pertinents pour leur optimisation. (French)
0 references
Identifiers
EXT00743
0 references